1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
12

An accident at an oil drilling platform is causing a circular oil slick. The slick is 0.07 foot thick, and when the radius of th

e slick is 110 feet, the radius is increasing at the rate of 0.9 foot per minute. At what rate (in cubic feet per minute) is oil flowing from the site of the accident? (Round your answer to two decimal places.)
Mathematics
1 answer:
ololo11 [35]3 years ago
7 0

Answer:43.54 ft^3/min

Step-by-step explanation:

Given

Thickness of oil slick=0.07 foot

radius of slick=110 ft

\frac{\mathrm{d} r}{\mathrm{d} t}=0.9 ft/s

Let V be the volume of oil slick

so, V=0.07\pi \cdot r^2

rate of oil flowing is

\frac{\mathrm{d} V}{\mathrm{d} t}=0.07\times 2\pi \cdot r\frac{\mathrm{d} r}{\mathrm{d} t}

\frac{\mathrm{d} V}{\mathrm{d} t}=0.07\times 2\pi \times 110\times 0.9=43.54 ft^3/min

You might be interested in
Is this a function if it is please show your work and explain why.
Gnom [1K]

9514 1404 393

Answer:

  not a function

Step-by-step explanation:

When a left-side point originates more than 1 arrow, the relation is not a function. There are two such points here, so this relation is not a function.

8 0
3 years ago
DEFG is an isosceles trapezoid. Find the measure of E.
abruzzese [7]
If it is isosceles angle E must be equal to F, in this case 75°
4 0
3 years ago
Read 2 more answers
How to find the area of the 45-45-90 triangle with a hypotenuse of 24?
ss7ja [257]
The area of a triangle is 1/2(base x height) .

The two legs of this triangle are equal.  If you position it properly,
one of them is the base, and the other one is the height.

Since it's a right triangle,    A² + B² = C²

But  A = B  and  C = 24 .

2A² = (24)²

A² = (24)² / 2

But since  A=B,  A² is also (base x height) of the triangle.
Area is just 1/2 of it.

Area = 1/2(24²/2) = (24)²/4 = (24/2)² = (12)² = <u>144</u> . 


6 0
3 years ago
Read 2 more answers
Someone help fastttt !!!!!!!!!!!!!
Vlada [557]

Answer I think that it is x times 1 times 100= altitude.

Step-by-step explanation:

400/2= 200

but if you do it 700/6

it doesn't make sense unless

2 x 1 =2

2 x 100+200

3 0
3 years ago
Read 2 more answers
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Please help! Asap. U good in math cuz I'm not! Lol.
    8·2 answers
  • How many terms are in the expression shown below? x^2 - 10xy + 3y + y^2 - 1
    13·1 answer
  • Does anyone know what: 5-m&lt;4 equals?
    5·1 answer
  • Please explain how you got your answer.
    15·1 answer
  • The vertex of this parabola is at (5, 5). when the x-value is 6, they-value is -1. what is the coefficient of the squared expres
    13·2 answers
  • Find out if the 3 positions are on the same line or not (3,2,0) (1, -1,2) (5,5, 2)
    6·1 answer
  • Please help me!!
    9·1 answer
  • Question 1 There are 15 pieces of fruit in a bowl and 6 of them are apples. What percentage of the pieces of fruit in the bowl a
    15·2 answers
  • Find the sum of the interior angles of a regular 15 sided polygon.
    12·1 answer
  • Please help, and show me how you got the answer because i have to show for the answer thank you ❤️
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!