Solve this by dividing the 180 by 6. This results in 30. So, each number should be rolled 30 times. There are only two numbers greater than 4. Multiply 30 by 2 to get your answer, 60.
We need to find a cosine function:

The amplitude represents half the distance between the maximum and minimum values of the function and the period goes from the x-value of one peak to the x-value of the next one. Therefore:

Finally:

And y(4) is:

Answer:
525600
Step-by-step explanation:
<em>The</em><em> </em><em>length</em><em> </em><em>is</em><em> </em><em><u>1</u></em><em><u>5</u></em><em><u> </u></em><em>metres</em><em>,</em><em>the</em><em> </em><em>width</em><em> </em><em>is</em><em> </em><em><u>9</u></em><em><u> </u></em><em><u>m</u></em><em><u>,</u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>area</u></em><em><u> </u></em><em>is</em><em> </em><em><u>1</u></em><em><u>3</u></em><em><u>5</u></em><em><u> </u></em><em>m</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em>
For this case we have that by definition, the perimeter of a rectangle is given by:

Where:
l: It is the length of the rectangle
w: It is the width of the rectangle
According to the image we have:

So, rewriting the perimeter expression we have:

Applying distributive property to the terms within parentheses we have:

Answer:
The perimeter of the rectangle is: 