Answer:
Q = 1.08x10⁻¹⁰
Yes, precipitate is formed.
Explanation:
The reaction of CoF₂ with NaOH is:
CoF₂(aq) + 2 NaOH(aq) ⇄ Co(OH)₂(s) + 2 NaF(aq).
The solubility product of the precipitate produced, Co(OH)₂, is:
Co(OH)₂(s) ⇄ Co²⁺(aq) + 2OH⁻(aq)
And Ksp is:
Ksp = 3x10⁻¹⁶= [Co²⁺][OH⁻]²
Molar concentration of both ions is:
[Co²⁺] = 0.018Lₓ (8.43x10⁻⁴mol / L) / (0.018 + 0.022)L = <em>3.79x10⁻⁴M</em>
[OH⁻] = 0.022Lₓ (9.72x10⁻⁴mol / L) / (0.018 + 0.022)L = <em>5.35x10⁻⁴M</em>
Reaction quotient under these concentrations is:
Q = [3.79x10⁻⁴M] [5.35x10⁻⁴M]²
<em>Q = 1.08x10⁻¹⁰</em>
As Q > Ksp, <em>the equilibrium will shift to the left producing Co(OH)₂(s) </em>the precipitate
Answer:
The procedure for calculating the pH of a solution of a weak base is similar to that of the weak acid in the sample problem. However, the variable x will represent the concentration of the hydroxide ion. The pH is found by taking the negative logarithm to get the pOH, followed by subtracting from 14 to get the pH.
Explanation:
<span>The kinetic energy of its molecules has decreased</span>
I think the substance that will heat up faster would be the silver metal since it has a higher heat capacity. Heat capacity is the amount of heat needed to raise the temperature of the system into one degree. Heat capacity and heat energy is directly related so higher value of heat capacity would lead to higher heat energy.