Answer:
<em><u>The</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u>,</u></em><em><u> </u></em><em><u>q</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>16</u></em><em><u>.</u></em>
Step-by-step explanation:
1) Divide both sides by 3.

2) Simplify 27/3 to 9.

3) Add 7 to both sides.

4) Simplify 9 + 7 to 16.

<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>q</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>16</u></em><em><u>.</u></em>
CAC can be changed into CAAC. This is because the first rule says that any letter can change into an A so
CAC=CAA
The last condition says that when you double , you have to double all letters,
Since A has been doubled,C needs to be doubled too.So:
CAA=CAAC
Tbh i’m just trying to get points
Answer:
68
Step-by-step explanation:
1) 40+7=47
2) 47+7=54
3) 54+7=61
4) 61+7=68
Answer:
The frequency of the note a perfect fifth below C4 is;
B- 174.42 Hz
Step-by-step explanation:
Here we note that to get the "perfect fifth" of a musical note we have to play a not that is either 1.5 above or 1.5 below the note to which we reference. Therefore to get the frequency of the note a perfect fifth below C4 which is about 261.63 Hz, we have
1.5 × Frequency of note Y = Frequency of C4
1.5 × Y = 261.63
Therefore, Y = 261.63/1.5 = 174.42 Hz.