Answer:
x=8
Step-by-step explanation:
the addition of all the angles must equal 360(the 4 angles on the intersection) degrees
125+125=250
360-250=110
110/2=55
7*8-1=55
I believe its Alan, because I multiplied 5,280x21 and got 15,840 and then I divided that by 60, and got 258. 258≤1750... so Alan is you're answer
The expressions with radicals which are variables and numbers raised to a fractional indices are simplified as follows.
13. √(9·x) = 3·√x
14. √(4·y) = 2·√y
15. √(8·x²) = 2·x·√2
16. √(9·x²) = 3·x
17. √(3·x²) = x·√3
18. √(5·y²) = y·√5
19. √(13·x²) = x·√(13)
20. √(29·y²) = y·√(29)
21. √(64·y²) = 8·y
22. √(125·a²) = 5·a·√5
23. ∛(16) = 2·∛2
24. √(50·a²·b) = 5·a·√(2·b)
<h3>What are radicals expressions?</h3>
A radical expression is one that contains the radical (square root or nth root) sign, √.
13. √(9·x)
√(9·x) = √(3²·x) = 3·√x
14. √(4·y)
√(4·y) = √(2²·y) = 2·√y
15. √(8·x²)
√(8·x²) = √(4 × 2·x²) = √(2² × 2·x²)
√(2² × 2·x²) = √(2²·x² × 2) = 2·x·√2
16. √(9·x²)
√(9·x²) = √(3²·x²) = 3·x
17. √(3·x²)
18. √(5·y²)
√5 × √(y²) = √5 × y = y·√5
19. √(13·x²)
√(13·x²) = √(13) × √x² = √(13) × x = x·√(13)
20. √(29·y²)
√(29·y²) = √(29) × √(y²) = √(29) × y = y·√(29)
21. √(64·y²)
√(64·y²) = √(8²·y²) = √(8²) × √(y²) = 8 × y = 8·y
22. √(125·a²)
√(125·a²) = √(25 × 5 × a²) = √(25) × √5 × √(a²) = 5 × √5 × a
5 × √5 × a = 5·a·√5
23. ∛(16)
∛(16) = ∛(16) = ∛(8 × 2) = ∛(2³ × 2) = 2·∛2
24. √(50·a²·b)
√(50·a²·b) = √(25 × 2 × a² × b) = √(5² × 2 × a² × b) = √(5² × a² × 2 × b)
√((5² × a²) × 2 × b) = 5·a·√(2·b)
Learn more about simplifying expressions with radicals here:
brainly.com/question/13114751
#SPJ1
Subtract the 2nd row from the 1st row
5x = 5
Solve for x in the equation above
x = 1
Substitute x = 1 into any of the two equations above
Let's pick the first equation; 4x + 3y = -5
4 * 1 + 3y = -5
Solve for y in the equation above
y = -3
Therefore,
<u>x = 1</u>
<u>y = -3</u>