<u><em>Solution:</em></u>
<u><em></em></u>
Hope this helps!
Answer:
0.087
Step-by-step explanation:
Given that there were 17 customers at 11:07, probability of having 20 customers in the restaurant at 11:12 am could be computed as:
= Probability of having 3 customers in that 5 minute period. For every minute period, the number of customers coming can be modeled as:
X₅ ~ Poisson (20 (5/60))
X₅ ~ Poisson (1.6667)
Formula for computing probabilities for Poisson is as follows:
P (X=ₓ) = ((<em>e</em>^(-λ)) λˣ)/ₓ!
P(X₅= 3) = ((<em>e</em>^(-λ)) λˣ)/ₓ! = (e^-1.6667)((1.6667²)/3!)
P(X₅= 3) = (2.718^(-1.6667))((2.78)/6)
P(X₅= 3) = (2.718^(-1.6667))0.46
P(X₅= 3) = 0.1889×0.46
P(X₅= 3) = 0.086894
P(X₅= 3) = 0.087
Therefore, the probability of having 20 customers in the restaurant at 11:12 am given that there were 17 customers at 11:07 am is 0.087.
9514 1404 393
Answer:
x = -2
Step-by-step explanation:
Line q is the horizontal line y = 6, so the perpendicular line will be vertical. In order for it to go through the point (-2, 3), the equation must be ...
x = -2
Answer:
Step-by-step explanation:
...
the correct question is
The midpoint of kl is m(–8, 1). one endpoint is k(–6, 5). find the coordinates of the other endpoint l.
we know that
the formula of midpoint is
Xm=(x1+x2)/2----> 2*Xm=x1+x2------> x2=2*Xm-x1
Ym=(y1+y2)/2----> 2*Ym=y1+y2------> y2=2*Ym-y1
let
(x1,y1)-------> (–6, 5).
(Xm,Ym)-----> (-8,1)
find (x2,y2)
x2=2*Xm-x1-----> 2*(-8)-(-6)----> -10
y2=2*Ym-y1----> 2*(1)-5-----> -3
the point l is (-10,-3)