1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
10

Shapes with 2 pairs of parallel sides

Mathematics
2 answers:
lukranit [14]3 years ago
6 0
Square
Parallelogram
Rectangle
bagirrra123 [75]3 years ago
5 0
Squares and rectangles

You might be interested in
What is half of 10,338? in other words what + what equals 10,338
Maru [420]
To find half of something, we can divide by 2. So 10338/2 = 5169
7 0
3 years ago
Estimate then find the product 4x979
Vlad [161]
Estimate: 4x980= 3920

Actual Product: 3916
6 0
3 years ago
Read 2 more answers
Can anyone help?? Please
natta225 [31]
3O=12/3   Divide both sides by 3.
/3

O=4
<span>
♢+2=5(4)
</span><span>♢+2=20
</span>    -2  -2      Subtract 2

<span> ♢=18
</span>
 2(4)+18=2∆
8+18=2∆
26=2∆
/2     /2      Divide by 2

∆=13
6 0
3 years ago
Read 2 more answers
What is the solution of the system?<br><br> {2x+y=15<br> {x−y=3
dangina [55]
X=6 AND y = 3
(6,3) in ordered-pair form
4 0
4 years ago
Read 2 more answers
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • In a school of 330 students, 85 of them are in the drama club, 200 of them are in a sports team and 60 students do drama and spo
    10·1 answer
  • Please explain this and help me
    14·1 answer
  • Determine the point estimate of the population proportion and the margin of error for the following confidence interval.Lower bo
    6·1 answer
  • The ratio of the volume of fruit juice to the volume of smoothies served at a party was 4 1/2: 2.4. There were 35 liters more fr
    9·1 answer
  • You roll a standard, six-sided number cube. What is the probability of rolling a prime number or a number greater than 3?
    15·1 answer
  • Solve the following inequality: 10t + 7 , 200 &gt; 21 , 000
    6·1 answer
  • If m∠FBE=(4x+2)° and m∠EBD=(5x−13)°, then m∠FBA=
    6·1 answer
  • Point-Slope Form: y - 5= 3(x- 1) Standard Form: ​
    9·2 answers
  • Help help help please !!!!
    7·1 answer
  • I NEED HELP ASAP GIVE U 50 POINTS​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!