The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be
On dividing all the three ratios with 2 u can simplify it as
2:11:15
Hope it helps.
Dont forget to say thx if it helps
3% as a decimal is 0.03 and I think 3% as a fraction in simplest form is 3/100
Answer:
length of scale drawing = 9 feet
width of scale drawing = 3 feet
Step-by-step explanation:
Actual dimension 15 feet by 45 feet.
length = 45 feet
width = 15 feet
Dimension on drawing is 20% of actual dimension.
20% = 20/100
Thus,
20% of 15 feet = 20/100 * 15 feet = 3 feet
20% of 45 feet = 20/100 * 45 feet = 9 feet
Thus, length of scale drawing = 9 feet
width of scale drawing = 3 feet
Answer:
-7×-9
=63
Step-by-step explanation:
If u multiple - with -, I'll get + sign