24/7 .........................................................................................
Answer:
length: 16 m; width: 13 m
Step-by-step explanation:
Write each of the statements as an equation. You know that the formula for the perimeter is ...
P = 2(L +W)
so one of your equations is this one with the value of P filled in:
• 2L + 2W = 58
The other equation expresses the relation between L and W:
• L = W +3 . . . . . . . . the length is 3 meters greater than the width
There are many ways to solve such a system of equations. Since you have an expression for L, it is convenient to substitute that into the first equation to get ...
2(W+3) +2W = 58
4W +6 = 58 . . . . . . . simplify
4W = 52 . . . . . . . . . . subtract 6
W = 13 . . . . . . . . . . . .divide by 4
We can use the expression for L to find its value:
L = 13 +3 = 16
The length is 16 meters; the width is 13 meters.
Answer:

Step-by-step explanation:
on the picture
If it's helpful ❤❤❤
THANK YOU.
Given a point in coordinates form

, one can compute the cartesian form like this:

We have:

We get the cartesian form then:
Answer:
A ∩ B = {1, 3, 5}
A - B = {2, 4}
Step-by-step explanation:
The given problem regards sets and set notation, a set can simply be defined as a collection of values. One is given the following information:
A = {1, 2, 3, 4, 5}
B = {1, 3, 5, 6, 9}
One is asked to find the following:
A ∩ B,
A - B
1. Solving problem 1
A ∩ B,
The symbol (∩) in set notation refers to the intersection between the two sets. It essentially asks one to find all of the terms that two sets have in common. The given sets (A) and (B) have the values ({1, 3, 5}) in common thus, the following statement can be made,
A ∩ B = {1, 3, 5}
2. Solving problem 2
A - B
Subtracting two sets is essentially taking one set, and removing the values that are shared in common with the other set. Sets (A) and (B) have the following values in common ({1, 3, 5}). Thus, when doing (A - B), one will omit the values ({1, 3, 5}) from set (A).
A - B = {2, 4}