20l + 25g -10
replace G with 4 and L with 3
20(3) + 25(4) - 10
60 + 100 - 10
160 - 10
150
he made $150
None, the only correct answer is...
-2 > -12
... in negative integers, the smaller the magnitude the bigger it is.
Answer:
2.67 inches.
Step-by-step explanation:
Assuming that we represent the size of the squares with the letter y, such that after the squares are being cut from each corner, the rectangular length of the box that is formed can now be ( 23 - 2y), the width to be (13 - 2y) and the height be (x).
The formula for a rectangular box = L × B × W
= (23 -2y)(13-2y) (y)
= (299 - 46y - 26y + 4y²)y
= 299y - 72y² + 4y³
Now for the maximum volume:
dV/dy = 0
This implies that:
299y - 72y² + 4y³ = 299 - 144y + 12y² = 0
By using the quadratic formula; we have :

where;
a = 12; b = -144 and c = 299






Since the width is 13 inches., it can't be possible for the size of the square to be cut to be 9.33
Thus, the size of the square to be cut out from each corner to obtain the maximum volume is 2.67 inches.
<h3>Explanation:</h3>
<em>Lateral Area</em>
The lateral area is the area of the sides of the prism. If the faces are perpendicular to the bases, then each face is a rectangle. The area of each rectangle is the product of its length and width, generally the product of the height of the prism and the length of one edge of the base.
The total lateral area will then be the product of the height of the prism and the perimeter of the base.
<em>Total Area</em>
The total area is the sum of the lateral area (computed as above) and the area of the two bases of the prism. The formula for that area depends on the shape of the prism. (You have already seen formulas for the areas of triangles, rectangles, and other plane shapes. If not, they are readily available in your text or using a web search.)