6.6 Symmetries of Regular
Polygons
A Solidify Understanding Task
A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto
itself by a rotation is said to have rotational symmetry. A diagonal of a polygon is any line
segment that connects non-consecutive vertices of the polygon.
For each of the following regular polygons, describe the rotations and reflections that carry it onto
itself: (be as specific as possible in your descriptions, such as specifying the angle of rotation)
1. An equilateral triangle
2. A square
3. A regular pentagon
4. A regular hexagon
Step-by-step explanation:
Step 1:
Let x equal the repeating decimal you are trying to convert to a fraction.
Step 2:
Examine the repeating decimal to find the repeating digit(s).
Step 3:
Place the repeating digit(s) to the left of the decimal point.
Step 4:
Place the repeating digit(s) to the right of the decimal point.
Step 5:
Using the two equations you found in step 3 and step 4, subtract the left sides of the two equations. Then, subtract the right sides of the two equations
As you subtract, just make sure that the difference is positive for both sides.
Answer: y = 2x + 5
Step-by-step explanation:
Answer:
nope
Step-by-step explanation: