Answer:
The total amount of meters in one lap is 966
Step-by-step explanation:
we know that
The total amount of meters in one lap is the same that the perimeter of the rectangular playground
so
The perimeter of the rectangular playground is equal to

we have

substitute


9514 1404 393
Answer:
Step-by-step explanation:
You have to realize that the absolute value function will change the sign of its argument only if that argument is negative.
108. |x -7| = x -7 . . . . . true for x-7≥0
x ≥ 7 . . . . makes the statement true
__
1a. When m < 9, the value 6m is less than 54, so 6m-54 < 0. That means the absolute value function changes the sign of its argument:
54 -6m . . . . . simplified form for m < 9
__
1b. |y -x| = y -x . . . when y > x, the argument of the absolute value is positive
Answer:
0.00939495805 about 0.01
Step-by-step explanation:
basically solving for arccos(8.5/9.9) in degrees, had to run through calculator
Answer:
Rs 120.
Step-by-step explanation:
10=0.85SP-CP; CP+10=0.85SP; SP=[CP+10]/0.85 Eq 1. Let SP= Selling Price and CP= Cost Price
-2 =0.75SP-CP; 0.75SP=C-2; SP=[CP-2]/0.75 Eq 2
[CP+10]/0.85=[CP-2]/0.75 : SP of Eq 1=SP of Eq 2
0.75[CP+10]=0.85[CP-2]
0.75CP+7.5=0.85CP-1.7
0.85CP-0.75CP=-1.7–7.5=9.2
0.10CP=9.2; CP=9.2/0.10
CP=Rs 92 Cost Price of pen
10=0.85SP-92; 0.85SP=92+10=102; SP=102/0.85=Rs 120 Marked Price of pen (answer)
From Eq2: -2=0.75SP-CP; 0.75SP=CP-2=92–2=90; SP=90/0.75=Rs120; -2=0.75(120)-CP; CP-2=0.75(120); CP-2=90; CP=90+2=Rs 92
Set CP of Eq 1=CP of Eq 2:
CP=0.85SP-10 from Eq 1; CP=0.75SP+2 from Eq 2;
0.85SP-10=0.75SP+2; 0.85SP-0.75SP=10+2=12
0.10SP=12; SP=12/0.10=Rs120 is the Marked Price(answer)
Normally, the Selling Price is the marked price. The seller will not disclose the Cost Price because it is the price when the item was acquired or procured, otherwise the buyer will ask for more discounts and based his buying price from the Cost Price if it is known. The calculated SP and CP satisfy both Eq 1 and Eq 2. Both Eq 1 and Eq 2 satisfy the given conditions of the problem above.