1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
8

The number of square feet per house are normally distributed with a population standard deviation of 137 square feet and an unkn

own population mean. A random sample of 19 houses is taken and results in a sample mean of 1350 square feet. Find the margin of error for a 80% confidence interval for the population mean.
Mathematics
1 answer:
pshichka [43]3 years ago
7 0

Answer:

Step-by-step explanation:

Given that X, the number of square feet per house is N(mean, 137)

Sample size = 19

Sample mean x bar =1350 sq ft

Since population std dev is given,

std error of sample = \frac{137}{\sqrt{19} } \\=31.43

Since sample size is small, t critical value can be used

df = 18

t value for 80% two tailed = 1.333

Margin of error = ±1.333(std error) = ±1.333*31.43\\=41.896

Confidence interval = sample mean ±margin of error

= 1350-41.896,1350+41.896\\=(1308.104,1391.896)

You might be interested in
Given a sphere with a diameter of 8 cm, find its volume to the nearest whole number
arsen [322]

Answer:

268 cm

Step-by-step explanation:

A P E X

4 0
3 years ago
Please help me with this answer
Dmitrij [34]

Answer:

0.703

Step-by-step explanation:

19/70 = 70.37/100

Hope This Helps :)

6 0
3 years ago
Read 2 more answers
Is 45 /5 equal to a whole number or mixed number and why
Bas_tet [7]

it is both. why? because 45/5 is greater than 1
3 0
3 years ago
Read 2 more answers
What type of transformation transforms a,b -a,b
Tamiku [17]
The transformation is a reflection
3 0
3 years ago
Read 2 more answers
Differentiate the function. y = (3x - 1)^5(4-x^4)^5​
TiliK225 [7]

Answer:

\displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = (3x - 1)⁵(4 - x⁴)⁵

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                    \displaystyle y' = \frac{d}{dx}[(3x - 1)^5](4 - x^4)^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]
  2. Chain Rule [Basic Power Rule]:                                                                       \displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]
  3. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]
  4. Basic Power Rule:                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3x^{1 - 1}](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]
  5. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]
  6. Multiply:                                                                                                             \displaystyle y' = 15(3x - 1)^4(4 - x^4)^5 - 20x^3(3x - 1)^5(4 - x^4)^4
  7. Factor:                                                                                                               \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]
  8. [Distributive Property] Distribute 3:                                                                 \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]
  9. [Distributive Property] Distribute -4x³:                                                            \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]
  10. [Brackets] Combine like terms:                                                                       \displaystyle y' = 5(3x-1)^4(4 - x^4)^4(-15x^4 + 4x^3 + 12)
  11. Factor:                                                                                                               \displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Will vote brainliest.
    10·2 answers
  • Is what i did correct?
    14·2 answers
  • Please help I’ll mark brainliest
    7·2 answers
  • Which fraction in equivalent to 5/20?<br>​
    8·2 answers
  • If a bike travels 5 miles in 20 minutes, how long does it take to travel 25 miles?
    12·1 answer
  • Liam earns $12 for each hour of dog walking. How many hours in all will it take Liam to
    14·2 answers
  • HELP PLEASEEEEEE!!!!!!!​
    8·2 answers
  • At a baseball game, the stadium gave T-shirts to the first 100 fans to arrive. Each T-shirt cost $15.00. How much did the stadiu
    5·1 answer
  • Marcia used 1 1 3 yards of fabric to make 2 3 of a costume. How many yards of fabric will she need to make five costumes?
    13·1 answer
  • Write the equation for g (x)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!