1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
9

Differentiate the function. y = (3x - 1)^5(4-x^4)^5​

Mathematics
1 answer:
TiliK225 [7]3 years ago
6 0

Answer:

\displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = (3x - 1)⁵(4 - x⁴)⁵

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                    \displaystyle y' = \frac{d}{dx}[(3x - 1)^5](4 - x^4)^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]
  2. Chain Rule [Basic Power Rule]:                                                                       \displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]
  3. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]
  4. Basic Power Rule:                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3x^{1 - 1}](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]
  5. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]
  6. Multiply:                                                                                                             \displaystyle y' = 15(3x - 1)^4(4 - x^4)^5 - 20x^3(3x - 1)^5(4 - x^4)^4
  7. Factor:                                                                                                               \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]
  8. [Distributive Property] Distribute 3:                                                                 \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]
  9. [Distributive Property] Distribute -4x³:                                                            \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]
  10. [Brackets] Combine like terms:                                                                       \displaystyle y' = 5(3x-1)^4(4 - x^4)^4(-15x^4 + 4x^3 + 12)
  11. Factor:                                                                                                               \displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
What is 720 degrees converted to radians​
PtichkaEL [24]
720 degrees = 12.566 radians
6 0
3 years ago
Read 2 more answers
The height of a right rectangular prism is 3 units greater than the length of the base. The edge length of the square base is x
jok3333 [9.3K]

Answer:

B. x^3 + 3x^2

Step-by-step explanation:

Volume of a rectangular prism=width * length * height

V=w*l*h

h=3 greater than the length of the base

h=x+3

Length of the base=x

Width=x

Substituting values into the formula

V=w*l*h

=(x)*(x)*(x+3)

Multiplying

=(x^2)(x+3)

=x^3 + 3x^2

Option B is the correct answer

5 0
3 years ago
A rectangle is formed by placing two identical squares side by side
julsineya [31]

Answer:

200

Step-by-step explanation:

If there are 2 squares next to eachother with the same area, then their perimeter is 6*sidelength.

60 = 6*sidelength

10 = sidelength

Square the sidelength to find the area of the square. 10^2 = 100

Multiply that by 2 to find the area of the rectangle. 100*2 =

200

4 0
3 years ago
A flagpole flying the Ohio state flag is 9/10 the height of a 30 foot-tall
kumpel [21]
The flag pole flying the Ohio state flag would be 27 feet tall. you just take 30, divide it by 10 and then multiply it by 9.

4 0
3 years ago
I need help with this question plz!! Geometry <br> best gets brainliest
777dan777 [17]

Answer:

Step-by-step explanation:

Is this rsm??

Just wanted to see because I have that problem too

6 0
3 years ago
Other questions:
  • Write the equation in slope intercept form of the line that is perpendicular to y=-3x+7 and passes through the point (6,-4)
    7·2 answers
  • Find the solution of this system of equations<br><br> 10x-7y=-1<br> -2x-7y+-25
    10·1 answer
  • Which expressions are equivalent to 70 × 5.3
    14·1 answer
  • At a football game, a vender sold a combined total of 201
    13·1 answer
  • Which statement is represented by the equation below? (2 pts)<br> 16 x 6 = 96
    9·1 answer
  • Find slope <br> 11x - 6y = -36
    14·1 answer
  • 1/4 :10=x:4 find x<br><br> I need the answer now
    15·1 answer
  • Remove the brackets and simplify
    7·2 answers
  • 7. Yin's cellphone plan costs $30 a month. She used 22.5 hours in May
    7·1 answer
  • Algebra 1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!