1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
4 years ago
13

Can someone please answer this for me

Mathematics
1 answer:
schepotkina [342]4 years ago
7 0

Answer:

x = 9

Step-by-step explanation:

MN is a midline segment and is half the length of GH, thus

GH = 2 × MN, substitute values

15x - 45 = 10x ( subtract 10x from both sides )

5x - 45 = 0 ( add 45 to both sides )

5x = 45 ( divide both sides by 5 )

x = 9

You might be interested in
SOMEONE HELP!! ASAP ! I’ll give brainliest !!! <br><br> I need answers for A B and C! Pls and ty!!
mrs_skeptik [129]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3 0
3 years ago
Describe how the graph of y= x2 can be transformed to the graph of the given equation. y = x2 + 8
ANEK [815]
When you add 8 to the end of a function formula, the graph moves UP 8 units.  This is often called either a translation or vertical shift.

3 0
3 years ago
What is AC? please help
Olegator [25]
155
Add the two angles
3 0
3 years ago
How do you know which line is steeper? or what is steeper?
boyakko [2]
I guess by if you are at the top and you don't want to go down the steepest line you look a the diameter of each area where the line is and also look down from the top you shoe be able to notice the slight contrast
6 0
3 years ago
Please help!!<br> Write a matrix representing the system of equations
frozen [14]

Answer:

(4, -1, 3)

Step-by-step explanation:

We have the system of equations:

\left\{        \begin{array}{ll}            x+2y+z =5 \\    2x-y+2z=15\\3x+y-z=8        \end{array}    \right.

We can convert this to a matrix. In order to convert a triple system of equations to matrix, we can use the following format:

\begin{bmatrix}x_1& y_1& z_1&c_1\\x_2 & y_2 & z_2&c_2\\x_3&y_2&z_3&c_3 \end{bmatrix}

Importantly, make sure the coefficients of each variable align vertically, and that each equation aligns horizontally.

In order to solve this matrix and the system, we will have to convert this to the reduced row-echelon form, namely:

\begin{bmatrix}1 & 0& 0&x\\0 & 1 & 0&y\\0&0&1&z \end{bmatrix}

Where the (x, y, z) is our solution set.

Reducing:

With our system, we will have the following matrix:

\begin{bmatrix}1 & 2& 1&5\\2 & -1 & 2&15\\3&1&-1&8 \end{bmatrix}

What we should begin by doing is too see how we can change each row to the reduced-form.

Notice that R₁ and R₂ are rather similar. In fact, we can cancel out the 1s in R₂. To do so, we can add R₂ to -2(R₁). This gives us:

\begin{bmatrix}1 & 2& 1&5\\2+(-2) & -1+(-4) & 2+(-2)&15+(-10) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\0 & -5 & 0&5 \\3&1&-1&8 \end{bmatrix}

Now, we can multiply R₂ by -1/5. This yields:

\begin{bmatrix}1 & 2& 1&5\\ -\frac{1}{5}(0) & -\frac{1}{5}(-5) & -\frac{1}{5}(0)& -\frac{1}{5}(5) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3&1&-1&8 \end{bmatrix}

From here, we can eliminate the 3 in R₃ by adding it to -3(R₁). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3+(-3)&1+(-6)&-1+(-3)&8+(-15) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&-5&-4&-7 \end{bmatrix}

We can eliminate the -5 in R₃ by adding 5(R₂). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0+(0)&-5+(5)&-4+(0)&-7+(-5) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&-4&-12 \end{bmatrix}

We can now reduce R₃ by multiply it by -1/4:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\ -\frac{1}{4}(0)&-\frac{1}{4}(0)&-\frac{1}{4}(-4)&-\frac{1}{4}(-12) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Finally, we just have to reduce R₁. Let's eliminate the 2 first. We can do that by adding -2(R₂). So:

\begin{bmatrix}1+(0) & 2+(-2)& 1+(0)&5+(-(-2))\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 1&7\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

And finally, we can eliminate the second 1 by adding -(R₃):

\begin{bmatrix}1 +(0)& 0+(0)& 1+(-1)&7+(-3)\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 0&4\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Therefore, our solution set is (4, -1, 3)

And we're done!

3 0
3 years ago
Other questions:
  • What is the value of log7 343
    14·2 answers
  • Please help with this equation
    11·1 answer
  • I REALLY NEED HELP ON THESE QUESTIONS!!!! IM SOOO STUCK!!!!
    8·1 answer
  • Evaluate the expression when m=-6<br><br> m2 + 7m +4
    10·2 answers
  • I need help with 6 and 7
    14·1 answer
  • How do u find slope of each line
    9·1 answer
  • Help me with this math question
    11·2 answers
  • How to solve for Area of trapezoid
    10·2 answers
  • What is the slope of the line that contains these points
    13·1 answer
  • Use synthetic division 6. (3x2 – 13x – 10) ÷ (x + 5)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!