1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
9

Q4: John runs 15 miles in 3 hours. How many miles can John run per hour?

Mathematics
2 answers:
denis-greek [22]3 years ago
8 0

Answer:

5 per hour

Step-by-step explanation:

15 miles the total amount he ran divided by 3 the total amount of time

15/3=5 so John ran 5 mph

spin [16.1K]3 years ago
8 0

Answer:

john runs 5 miles per hour because 3*5=15

Step-by-step explanation:

You might be interested in
Solve the Anti derivative.​
Alex Ar [27]

Answer:

\displaystyle \int {\frac{1}{9x^2+4}} \, dx = \frac{1}{6}arctan(\frac{3x}{2}) + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:                                                                \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:                                                                                                           \displaystyle \int {\frac{du}{a^2 + u^2}} = \frac{1}{a}arctan(\frac{u}{a}) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int {\frac{1}{9x^2 + 4}} \, dx<u />

<u />

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Factor fraction denominator:                                                         \displaystyle \int {\frac{1}{9(x^2 + \frac{4}{9})}} \, dx
  2. [Integral] Integration Property - Multiplied Constant:                                   \displaystyle \frac{1}{9} \int {\frac{1}{x^2 + \frac{4}{9}}} \, dx

<u>Step 3: Identify Variables</u>

<em>Set up u-substitution for the arctan trig integration.</em>

\displaystyle u = x \\ a = \frac{2}{3} \\ du = dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Substitute u-du:                                                                               \displaystyle \frac{1}{9} \int {\frac{1}{u^2 + (\frac{2}{3})^2} \, du
  2. [Integral] Trig Integration:                                                                               \displaystyle \frac{1}{9}[\frac{1}{\frac{2}{3}}arctan(\frac{u}{\frac{2}{3}})] + C
  3. [Integral] Simplify:                                                                                           \displaystyle \frac{1}{9}[\frac{3}{2}arctan(\frac{3u}{2})] + C
  4. [integral] Multiply:                                                                                           \displaystyle \frac{1}{6}arctan(\frac{3u}{2}) + C
  5. [Integral] Back-Substitute:                                                                             \displaystyle \frac{1}{6}arctan(\frac{3x}{2}) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

7 0
2 years ago
Given that(4,6) is on the graph of f(x) find the corresponding point for the function f(-4x)
Len [333]

Answer:

(-1,6)

Step-by-step explanation:

Given that(4,6) is on the graph of f(x)

f(-4x) means x is multiplied by -4

When x is multiplied by -1  then there will be reflection over y axis

We multiply every point by -1. so multiply the x values of the given point (4,6) by -1

New point is (-4,6)

If any number is multiplied with x then there will be a horizontal compression or stretch.

4 is multiplied with x , so there will be horizontal compression because 4 is greater than 1

To get new point, we divide the x values by 4 for compression

we already got (-4,6) after multiplying by -1

Now we divide the x coordinate -4 by 4 = -1

So corresponding point for the function f(-4x) is (-1,6)


5 0
3 years ago
I’ll give brainliest, just help me please :)
Lemur [1.5K]

Answer:

V = 408    SA = 378

Step-by-step explanation:

To find the volume, you need to first find out the area and multiply it by overall length.

A = 1/2 (6)(8)

= 24

Volume = 24 x 17

= 408

Surface Area

SA = Front and Back + Right Side + Left Side + Bottom

= 2 [1/2 (6) (8)] + (17 x 10) + (3 x 8) + (17 x 8)

= 2 (24) + 170 + 24 + 136

= 48 + 170 + 24 + 136

= 378

6 0
2 years ago
Find the area of the shaded regions. Give your answer as a completely simplified exact value in terms of π (no approximations).
Elan Coil [88]

Answer:

(40/3)*pi

Step-by-step explanation:

lets first find the area of the little circle

A=pi*r^2

A=pi*3^2

A=9pi

Now, lets find the area of the big circle

A=pi*r^2

A=pi*(3+4)^2

A=pi*7^2

A=49pi

now lets subtract the area of the little circle from the area of the big circle

49pi-9pi=40pi, now we found the area of the "bagel)

lets find what portion of the bagel is the shaded region

120/360=1/3

now lets multiply the bagel area by the fraction

40pi*(1/3)=

(40/3)*pi   or  (40*pi)/3

4 0
3 years ago
Please help. What is the circumference of the circle? <br><br> (X+4)^2+(y-5)^2=81
PIT_PIT [208]

the radius: r^2 = 81

r =9

c = 2*pi*r

 = 2 * pi * 9

 = 18 *pi

Answer: 18*pi or approximately 56.62

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which on these time measurements is the smallest?
    12·1 answer
  • A 3-mi cab ride costs $7.30. A 8-mi cab ride costs $15.30. Find a linear equation that models a relationship between cost c and
    10·1 answer
  • Two dives are tossed once what is the probability that the sum is less than 7
    8·1 answer
  • 7/3 = 4/t. what is t? Please give a good explanation.
    9·2 answers
  • What is the value of g in 1/3s + 14 = 26
    13·2 answers
  • Need help with this question ​
    7·1 answer
  • What’s the percentage as a decimal
    8·1 answer
  • write a multiplication equation and a division equation that represents the question how many 3/8 are in 5/4​
    5·1 answer
  • One hundred sixty-four million, two hundred twenty-eight thousand, five hundred ninety-one.
    10·2 answers
  • Whats is the ratio of blue paint to yellow paint
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!