-0.75 is a rational number because it can be expressed as the fraction -3/4 and it is an integer
Answer:
3048 x 1.04 ^3 = 3428.585474
Answer:

Step-by-step explanation:

Let us group the integers and the fractions.
= 
= 



Answer:
Step-by-step explanation:
Given the following :
Number of laptops in 2015 = 759
t(x) = 75x + 759 ; model to determine number of laptops at the school. X years after 2015.
Number of laptops in the school in 2020:
We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is: