1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
13

Compare.Write <,>,or = 25 lb____ 384 oz

Mathematics
2 answers:
Harman [31]3 years ago
7 0
25lb is larger than 384 oz.

Because there are sixteen ounces in one pound, and if you convert it 25 pounds is equal to 400 ounces.

Hope this helps.<span />
raketka [301]3 years ago
5 0
25 lb > 384 oz because 25 pounds is 400 ounces.
You might be interested in
Write the equation in slope-intercept form. 5x+3y=12
Umnica [9.8K]
5x+3y=12
Subtract 5x from both sides
3y=-5x+12
Divide by 3
Y=-5/3x +4
7 0
3 years ago
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
3 years ago
Read 2 more answers
Jason baked 7 pans of brownies. He gave ¼ of the brownies to his two sisters. How many pans of brownies did he give to his siste
boyakko [2]

Step-by-step explanation:

7×1/4 = 1.75

1.75 ÷ 2 = 0.875 pans each

8 0
3 years ago
Triangle G E F is shown with its exterior angles. Line G F extends through point B. Line F E extends through point A. Line E G e
Radda [10]

The measure of angle ∠EGF is 65°. And the measure of the angle ∠CGE is 115°.

<h3>What is the triangle?</h3>

A triangle is a three-sided polygon with three angles. The angles of the triangle add up to 180 degrees.

Triangle GEF is shown with its exterior angles.

Line GF extends through point B.

Line FE extends through point A.

Line EG extends through point C.

Angles ∠FEG and ∠EGF are congruent.

∠FEG = ∠EGF = x

Sides EF and GF are congruent.

Angle ∠EFG is 50° degrees.

∠EFG + ∠FGE + ∠GEF = 180°

                  50° + x + x = 180°

                               2x = 130°

                                 x = 65°

∠FEG = ∠EGF = 65°

Then angle ∠CGF will be

∠CGF + ∠FGE = 180°

   ∠CGF + 65° = 180°

             ∠CGF = 115°

More about the triangle link is given below.

brainly.com/question/25813512

#SPJ1

4 0
2 years ago
I need help with this ASAP plzzzzz
miss Akunina [59]

Answer:

23. \frac{4\sqrt{3} }{3}

24. \frac{7\sqrt{3}}{3}

25. 6\sqrt{3}

26. \frac{10\sqrt{3} }{3}

27.  14

28. 4\sqrt{3}

Step-by-step explanation:

To solve these i used SOHCAHTOA

sin=\frac{opposite}{adjacent}\\ cos=\frac{adjacent}{hypotenuse} \\tan=\frac{opposite}{adjacent}

23.

Find the missing side using Tangent

tan(30)=\frac{x}{4}

4*tan(30)=x

\frac{4\sqrt{3} }{3}

24.

Find the missing side using Tangent

tan(30)=\frac{x}{7}

7*tan(30)=x

\frac{7\sqrt{3}}{3}

25.

Find the missing side using Tangent

tan(30)=\frac{x}{18}

18*tan(30)=x

6\sqrt{3}

26.

Find the missing side using Tangent

tan(30)=\frac{x}{10}

10*tan(30)=x

\frac{10\sqrt{3} }{3}

27.

Find the missing side using Tangent

tan(30)=\frac{x}{14\sqrt{3} }

(14\sqrt{3}) *tan(30)=x

14

28.

Find the missing side using Tangent

tan(30)=\frac{x}{12}

12*tan(30)=x

4\sqrt{3}

5 0
3 years ago
Other questions:
  • What is 3.85 rounded
    5·2 answers
  • State how many imaginary and real zeros the function has. f(x) = x5 + 7x4 + 2x3 + 14x2 + x + 7
    15·1 answer
  • Chef Andy needed to adapt his recipes for his European kitchen staff in Paris. He was​ 1-pound portions of​ entrecote, 2 ounces
    7·1 answer
  • Describe and correct the error in rewriting the equation
    12·1 answer
  • What is the 20th term in the following arithmatic sequence<br> 1/2, 1, 3/2, 2...
    10·1 answer
  • 5, 8, II, 14 ...<br>The pattern is<br>Next 2 terms =​
    15·2 answers
  • Which point is located in Quadrant IV?
    10·2 answers
  • Please help me please.
    10·1 answer
  • GUYS WHAT THE FREAK HELP ME I BEEN ASKING FOR HELP FOR LIKE 7 HOURS HELP ME
    14·1 answer
  • Factor this polynomial completely x^2-10x+25
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!