The equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
<h3>What is a Quadratic Equation?</h3>
Quadratic equation is simply an algebraic expression of the second degree in x. Quadratic equation in its standard form is;
ax² + bx + c = 0
Where x is the unknown
From the given data, we check which of them fits the standard form of a quadratic equation.
- 2(x + 5)² + 8x + 5+ 6 = 0
2(x + 5)² + 8x + 5 + 6 = 0
2( (x(x+5) + 5(x+5) ) + 8x + 5 + 6 = 0
2( x² + 5x + 5x + 25 ) + 8x + 5 + 6 = 0
2( x² + 10x + 25 ) + 8x + 5 + 6 = 0
2x² + 20x + 50 + 8x + 5 + 6 = 0
2x² + 20x + 8x + 50 + 5 + 6 = 0
2x² + 28x + 61 = 0
Therefore, the equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
Learn more about quadratic equations here: brainly.com/question/1863222
#SPJ4
Answer:
Scatter plot one is not a good fit so answer is first picture to the left in a top row( see the pattern). Second plot is a good fit so the answer is the last right picture in a top row( points around x axis).
Step-by-step explanation:
A random scatter of points in the residual plot indicates that the linear function is a good fit for the given data. A non random residual plot indicates that the chosen function is not a good fit.
Answer:
irrational
Step-by-step explanation:
Answer:
Is -65
Step-by-step explanation:
Used a calculator
Given:
Distance between two buildings =
feet apart.
Distance between highway and one building =
feet.
Distance between highway and second building =
feet.
To find:
The standard form of the polynomial representing the width of the highway between the two building.
Solution:
We know that,
Width of the highway = Distance between two buildings - Distance of both buildings from highway.
Using the above formula, we get the polynomial for width (W) of the highway.


Combining like terms, we get



Therefore, the width point highway is
.