Yes, Bobby will have enough money if he saves for 9 weeks. You can find this through either substituting w for 9 in the equation, or solving the equation itself.
Substituting:

Substitute w for 9.

Simplify.

Solve.
255 is greater than 250, so yes, he will have enough money saved.
Solving the equation:

Original Equation

Subtract 30 from both sides.

Divide both sides by 25.
The number of weeks he needs is 8.8. When rounding it up, you get 9.
Answer:
The first one.
Step-by-step explanation:
C= chair cost
t= table cost
Create two equations with the given information. Solve for one variable in equation one. Substitute that answer in equation two. Then you can solve for the needed information.
3c+2t=$18
5c+6t=$48
3c+2t=18
Subtract 2c from both sides
3c=18-2t
Divide both sides by 3
c=(18-2t)/3
Substitute the value for c in equation two:
5c+6t=$48
5((18-2t)/3)+6t=48
(90-10t)/3+6t=48
Multiply everything by 3 to eliminate fraction
(3)((90-10t)/3)+(3)(6t)=(3)(48)
90-10t+18t=144
90+8t=144
Subtract 90 from both sides
8t=54
Divide both sides by 8
t=$6.75 cost for table
Substitute the t value to solve for c:
3c+2t=18
3c+2(6.75)=18
3c+13.50=18
3c=4.50
c=$1.50 chair cost
Check:
5c+6t=$48
5(1.50)+6(6.75)=48
7.50+40.50=48
48=48
Hope this helps! :) If it does, please mark as brainliest.
9514 1404 393
Answer:
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Step-by-step explanation:
The applicable derivative formula is ...
d(u/v) = (v·du -u·dv)/v²
__
f'(x) = ((-x² -5x -2)(4x +4) -(2x² +4x -3)(-2x -5))/(-x² -5x -2)²
f'(x) = (-4x³ -24x²-28x -8 +4x³ +18x² +14x -15)/(x² +5x +2)²
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
__
Similarly, the second derivative is the derivative of f'(x).
f''(x) = ((x² +5x +2)²(-12x -14) -(-6x² -14x -23)(2(x² +5x +2)(2x +5)))/(x² +5x +2)⁴
f''(x) = ((x² +5x +2)(-12x -14) +2(6x² +14x +23)(2x +5))/(x² +5x +2)³
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Answer: -26
Step-by-step explanation:
2(n - 4)= 3(n + 6)
2n -8 = 3n + 18
+8 +8
2n = 3n + 26
-3 -3
-1n = 26
n= -26