1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
15

Evaluate the line integral by the two following methods. xy dx + x2 dy C is counterclockwise around the rectangle with vertices

(0, 0), (5, 0), (5, 1), (0, 1) (a) directly -25 Incorrect: Your answer is incorrect. (b) using Green's Theorem 50 Incorrect: Your answer is incorrect.
Mathematics
1 answer:
Airida [17]3 years ago
3 0

Answer:

25/2

Step-by-step explanation:

Recall that for a parametrized differentiable curve C = (x(t), y(t)) with the parameter t varying on some interval [a, b]

\large \displaystyle\int_{C}[P(x,y)dx+Q(x,y)dy]=\displaystyle\int_{a}^{b}[P(x(t),y(t))x'(t)+Q(x(t),y(t))y'(t)]dt

Where P, Q are scalar functions

We want to compute

\large \displaystyle\int_{C}P(x,y)dx+Q(x,y)dy=\displaystyle\int_{C}xydx+x^2dy

Where C is the rectangle with vertices (0, 0), (5, 0), (5, 1), (0, 1) going counterclockwise.

a) Directly

Let us break down C into 4 paths \large C_1,C_2,C_3,C_4 which represents the sides of the rectangle.

\large C_1 is the line segment from (0,0) to (5,0)

\large C_2 is the line segment from (5,0) to (5,1)

\large C_3 is the line segment from (5,1) to (0,1)

\large C_4 is the line segment from (0,1) to (0,0)

Then

\large \displaystyle\int_{C}=\displaystyle\int_{C_1}+\displaystyle\int_{C_2}+\displaystyle\int_{C_3}+\displaystyle\int_{C_4}

Given 2 points P, Q we can always parametrize the line segment from P to Q with

r(t) = tQ + (1-t)P for 0≤ t≤ 1

Let us compute the first integral. We parametrize \large C_1 as

r(t) = t(5,0)+(1-t)(0,0) = (5t, 0) for 0≤ t≤ 1 and

r'(t) = (5,0) so

\large \displaystyle\int_{C_1}xydx+x^2dy=0

 Now the second integral. We parametrize \large C_2 as

r(t) = t(5,1)+(1-t)(5,0) = (5 , t) for 0≤ t≤ 1 and

r'(t) = (0,1) so

\large \displaystyle\int_{C_2}xydx+x^2dy=\displaystyle\int_{0}^{1}25dt=25

The third integral. We parametrize \large C_3 as

r(t) = t(0,1)+(1-t)(5,1) = (5-5t, 1) for 0≤ t≤ 1 and

r'(t) = (-5,0) so

\large \displaystyle\int_{C_3}xydx+x^2dy=\displaystyle\int_{0}^{1}(5-5t)(-5)dt=-25\displaystyle\int_{0}^{1}dt+25\displaystyle\int_{0}^{1}tdt=\\\\=-25+25/2=-25/2

The fourth integral. We parametrize \large C_4 as

r(t) = t(0,0)+(1-t)(0,1) = (0, 1-t) for 0≤ t≤ 1 and

r'(t) = (0,-1) so

\large \displaystyle\int_{C_4}xydx+x^2dy=0

So

\large \displaystyle\int_{C}xydx+x^2dy=25-25/2=25/2

Now, let us compute the value using Green's theorem.

According with this theorem

\large \displaystyle\int_{C}Pdx+Qdy=\displaystyle\iint_{A}(\displaystyle\frac{\partial Q}{\partial x}-\displaystyle\frac{\partial P}{\partial y})dydx

where A is the interior of the rectangle.

so A={(x,y) |  0≤ x≤ 5,  0≤ y≤ 1}

We have

\large \displaystyle\frac{\partial Q}{\partial x}=2x\\\\\displaystyle\frac{\partial P}{\partial y}=x

so

\large \displaystyle\iint_{A}(\displaystyle\frac{\partial Q}{\partial x}-\displaystyle\frac{\partial P}{\partial y})dydx=\displaystyle\int_{0}^{5}\displaystyle\int_{0}^{1}xdydx=\displaystyle\int_{0}^{5}xdx\displaystyle\int_{0}^{1}dy=25/2

You might be interested in
Which of these graphs represents a function?
Alisiya [41]

Answer:

the upper right one

6 0
3 years ago
Read 2 more answers
Please help, I will mark brainliest!
4vir4ik [10]
4
Put the smol 7 next to it !!

8 0
3 years ago
Carlos made 32 of his 40 serve attempts over the net. What percent of his
ddd [48]
80% because you would do 32 divided by 40 *100 to get 80%
5 0
3 years ago
What 2 numbers have a total of 46 and a diffrence of 12​
aleksley [76]

Answer:

29 and 17

Step-by-step explanation:

Sum: 29 + 17 = 46

Difference: 29 - 17 = 12

3 0
3 years ago
Read 2 more answers
Determine if the following is consistent Subscript[x, 1] - 2 Subscript[x, 2] + Subscript[x, 3] = 0 Subscript[ , ] 2Subscript[x,
lakkis [162]

Answer:

The systems of equation is CONSISTENT

Step-by-step explanation:

The detailed steps using crammers rule to ascertain the CONSISTENCY is as shown in the attached file

7 0
3 years ago
Other questions:
  • The sum of <br> 5 consecutive integers is <br> 110<br> What is the fourth number in this sequence?
    10·1 answer
  • 10. What is an expression for the perimeter of the triangle?
    15·1 answer
  • PPPPLLLLEEEEAAASSSEEE HHHHEEELLLPPP!!!!!!
    8·1 answer
  • Need Help!!! ASAP
    15·1 answer
  • I need help! Number 7 pls
    14·1 answer
  • The length of each side of a triangle is increased by 30%. By what percentage is the area increased?
    8·1 answer
  • A 6-car monorail train can carry 78 people.If the train makes 99 trips during the day,what is the greatest number of people the
    8·2 answers
  • What is m∠1?................
    7·1 answer
  • Which one is correct
    7·1 answer
  • PLEASE HELP SOON!!!!!!!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!