F(-1) = -11
f(0) = -9
f(3) = -3
Answer: 1/3
<u>Divide</u>
30/90÷30/30=1/3
Since we are simplifying fractions we divide the numerator and the denominator by a number the fraction can go into.
We could use 10 then divide by 3. You can also just divide by 30 and get the answer.
Let's try dividing by 10 then 3!
30/90÷10/10=3/9
3/9÷3/3=1/3
As you can see we still get 1/3 when we divide by 3. Even tho you have to divide twice you still get 1/3. That's all that matters.
Answer:
- The sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is <u>translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis</u>.
Explanation:
By inspection (watching the figure), you can tell that to transform the triangle XY onto triangle X"Y"Z", you must slide the former 5 units to the left, 1 unit down, and, finally, reflect it across the x-axys.
You can check that analitically
Departing from the triangle: XYZ
- <u>Translation 5 units to the left</u>: (x,y) → (x - 5, y)
- Vertex X: (-6,2) → (-6 - 5, 2) = (-11,2)
- Vertex Y: (-4, 7) → (-4 - 5, 7) = (-9,7)
- Vertex Z: (-2, 2) → (-2 -5, 2) = (-7, 2)
- <u>Translation 1 unit down</u>: (x,y) → (x, y-1)
- (-11,2) → (-11, 2 - 1) = (-11, 1)
- (-9,7) → (-9, 7 - 1) = (-9, 6)
- (-7, 2) → (-7, 2 - 1) = (-7, 1)
- <u>Reflextion accross the x-axis</u>: (x,y) → (x, -y)
- (-11, 1) → (-11, -1), which are the coordinates of vertex X"
- (-9, 6) → (-9, -6), which are the coordinates of vertex Y""
- (-7, 1) → (-7, -1), which are the coordinates of vertex Z"
Thus, in conclusion, it is proved that the sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis.