Answer:
1 hour and 42.8 minutes
Step-by-step explanation:
To answer this question let's call
while it takes Jenna to clean the gutters
Let's call
while it takes John to clean the gutters
h
h
t = total time
g = job = 1 (clean the gutters)
The speed of each one is:
g/ h
g/h
![V = V_1 + V_2 = \frac{g}{t} = \frac{1}{t}](https://tex.z-dn.net/?f=V%20%3D%20V_1%20%2B%20V_2%20%3D%20%5Cfrac%7Bg%7D%7Bt%7D%20%3D%20%5Cfrac%7B1%7D%7Bt%7D)
So:
![V = V_1 + V_2 = \frac{1}{4} +\frac{1}{3}](https://tex.z-dn.net/?f=V%20%3D%20V_1%20%2B%20V_2%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%5Cfrac%7B1%7D%7B3%7D)
![\frac{1}{t} = \frac{1}{4} + \frac{1}{3}= \frac{7}{12} g/h](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B3%7D%3D%20%5Cfrac%7B7%7D%7B12%7D%20g%2Fh)
h
Then, both together paint
of gutters for each hour.
This means that it takes
hours to clean the gutters together
Finally cleaning together takes 1,714 hours or also
1 hour and 42.8 minutes