Answer:-0.0625
Step-by-step explanation:
Answer:
f(g(x)) = 2(x^2 + 2x)^2
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Step-by-step explanation:
Given;
f(x) = 2x^2
g(x) = x^2 + 2x
To derive the expression for f(g(x)), we will substitute x in f(x) with g(x).
f(g(x)) = 2(g(x))^2
f(g(x)) = 2(x^2 + 2x)^2
Expanding the equation;
f(g(x)) = 2(x^2 + 2x)(x^2 + 2x)
f(g(x)) = 2(x^4 + 2x^3 + 2x^3 + 4x^2)
f(g(x)) = 2(x^4 + 4x^3 + 4x^2)
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Hope this helps...
The area bounded by the 2 parabolas is A(θ) = 1/2∫(r₂²- r₁²).dθ between limits θ = a,b...
<span>the limits are solution to 3cosθ = 1+cosθ the points of intersection of curves. </span>
<span>2cosθ = 1 => θ = ±π/3 </span>
<span>A(θ) = 1/2∫(r₂²- r₁²).dθ = 1/2∫(3cosθ)² - (1+cosθ)².dθ </span>
<span>= 1/2∫(3cosθ)².dθ - 1/2∫(1+cosθ)².dθ </span>
<span>= 9/8[2θ + sin(2θ)] - 1/8[6θ + 8sinθ +sin(2θ)] .. </span>
<span>.............where I have used ∫(cosθ)².dθ=1/4[2θ + sin(2θ)] </span>
<span>= 3θ/2 +sin(2θ) - sin(θ) </span>
<span>Area = A(π/3) - A(-π/3) </span>
<span>= 3π/6 + sin(2π/3) -sin(π/3) - (-3π/6) - sin(-2π/3) + sin(-π/3) </span>
<span>= π.</span>
the sequence is:
Translation, then reflection.
The correct option is the second one.
<h3>
What combination of transformations is shown?</h3>
We start with figure 1.
In the image, we can see that the image is shifted 4 units up and 4 units left to make figure 2.
Then you can see that the image is reflected across a horizontal line to make figure 3, you can see that because now the "L" is facing upwards.
Then the sequence is:
Translation, then reflection.
The correct option is the second one.
If you want to learn more about transformations:
brainly.com/question/4289712
#SPJ1
Factors of 3771 are:
1, 3, 9, 419, 1257, 3771
Factors of 3298 are:
1, 2, 17, 34, 97, 194, 1649, 3298
As you can see, no factors goes into both number.
Therefore, there should be no number goes into both 3771 and 3298 evenly.
Hope this helps and hope I didn't misunderstood this question. :D