Answer:
Step-by-step explanation:
Hope this helps
PLZZ MARK BRAINLIEST
<em>here's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>it </em><em>is </em><em>given </em><em>that</em><em>. </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>height</em><em> </em><em>of </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>1</em><em>5</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>radius</em><em> </em><em>of</em><em> </em><em>base </em><em>=</em><em> </em><em>9</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>π </em><em>r^</em><em>2</em><em>h</em><em> </em><em>cubic </em><em>unit</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>now,</em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>height</em><em> and</em><em> </em><em>radius </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>in </em><em>above </em><em>formula </em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em>9</em><em>*</em><em>9</em><em>*</em><em>1</em><em>5</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>3</em><em>6</em><em>1</em><em>7</em><em>7</em><em>c</em><em>u</em><em>b</em><em>i</em><em>c</em><em> </em><em>unit</em>
Answer:
found this i think this should help with your question
Step-by-step explanation:
Circumcenter is where three perpendicular bisectors intersect and incenter is where the three angle bisectors intersect.
Way to find them and the theorems are mentioned below.
Step-by-step explanation:
To find Incenter :
Construct angle bisectors of each angle of the triangle and their intersection point gives the incenter.
To find Circumcenter:
Construct perpendicular bisectors of all sides of triangle and their intersection point gives the circumcenter.
Circumcenter Theorem: It states that the vertices of a triangle are equidistant from the circumcenter.
Incenter Theorem: It states that the incenter is equidistant from the sides of the triangle.