Answer:
P = f(TLTL) = 0,16
H = f(TLTS) = 0,48
Q = f(TSTS) = 0,36
Explanation:
Hello!
The allele proportion of any locus defines the genetic constitution of a population. Its sum is 1 and its values can vary between 0 (absent allele) and 1 (fixed allele).
The calculation of allelic frequencies of a population is made taking into account that homozygotes have two identical alleles and heterozygotes have two different alleles.
In this case, let's say:
f(TL) = p
f(TS) = q
p + q = 1
Considering the genotypes TLTL, TLTS, TSTS, and the allele frequencies:
TL= 0,4
TS= 0,6
Genotypic frequency is the relative proportion of genotypes in a population for the locus in question, that is, the number of times the genotype appears in a population.
P = f(TLTL)
H = f(TLTS)
Q = f(TSTS)
Also P + H + Q = 1
And using the equation for Hardy-Weinberg equilibrium, the genotypic frequencies of equilibrium are given by the development of the binomial:



So, if the population is in balance:



Replacing the given values of allele frecuencies in each equiation you can calculate the expected frequency of each genotype for the next generation as:



I hope you have a SUPER day!
Answer: Birds pick up oil on their beaks, by rubbing against the uropygial or preen gland near the tail, and then rub it over their feathers. This makes the water unable to break through the oil.
Explanation: Hope this helps have a great day :)
Answer:
The answer is C
Explanation:
Nutrients (Nitrogen, Phosphorus, and Potassium) They are the third most frequent stressor in impaired rivers and streams, and the fourth greatest stressor in impaired estuaries. The three primary nutrients in manure are nitrogen, phosphorus, and potassium.
The answer does the question is : C
Answer:
100%
Explanation:
This question involves two genes in guinea pigs; one coding for fur color and the other for fur length. The alleles of black fur (B) and short fur (F) is dominant over the alleles for brown fur (b) and long fur (f).
In a cross between two offsprings with genotypes: BBFF x bbff, the following gametes will be produced by each parent:
BBFF - BF, BF, BF, and BF
bbff - bf, bf, bf, bf
Using these gametes in a punnet square (see attached image), one will notice that all of the offsprings will have the genotype: BbFf i.e all or 100% of the offsprings are heterozygous for both of the genes or traits.