The answer is A. y = -2/5
Properties of equality have nothing to do with it. The associative and commutative properties of multiplication are used (along with the distributive property and the fact of arithmetic: 9 = 10 - 1).
All of these problems make use of the strategy, "look at what you have before you start work."
1. = (4·5)·(-3) = 20·(-3) = -60 . . . . if you know factors of 60, you can do this any way you like. It is convenient to ignore the sign until the final result.
2. = (2.25·4)·23 = 9·23 = 23·10 -23 = 230 -23 = 207 . . . . multiplication by 4 can clear the fraction in 2 1/4, so we choose to do that first. Multiplication by 9 can be done with a subtraction that is often easier than using ×9 facts.
4. = (2·5)·12·(-1) = 10·12·(-1) = (-1)·120 = -120 . . . . multiplying by 10 is about the easiest, so it is convenient to identify the factors of 10 and use them first. Again, it is convenient to ignore the sign until the end.
5. = 0 . . . . when a factor is zero, the product is zero
Sqrt(9)÷25= 0.12 I hope this helps!
Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum
Answer:
y = -4/3x - 1
Step-by-step explanation: