Answer:
its c
Step-by-step explanation:
Answer:
The equation is,

Step-by-step explanation:
According to the question, the equation is cubic and have roots -1 (with multiplicity of 2) and -2.
So, the equation is,

[Since, when a , b , c are the roots of a cubic equation, the equation is
given by
]
Answer:
False
Step-by-step explanation:
You can have more than one line of symmetry to divide figures into more than two equal parts.
Answer:
10.25
Step-by-step explanation:
The slope of AC is given by the slope formula:
m = (y2 -y1)/(x2 -x1)
m = (-4 -1)/(3 -(-1)) = -5/4
Then the slope of CB is the opposite reciprocal, 4/5. The equation of line CB in point-slope form is ...
y -k = m(x -h) . . . . . . line with slope m through point (h, k)
y -(-4) = 4/5(x -3) . . . . line CB
When y = 1 (to match the y-value of A), then ...
1 +4 = 4/5(x -3)
5(5/4) = (x -3) . . . . . multiply by 5/4
6.25 +3 = x = 9.25 . . . . add 3
Point B is (9.25, 1).
The length of the hypotenuse is ...
9.25 -(-1) = 10.25
Answer:
The values of p in the equation are 0 and 6
Step-by-step explanation:
First, you have to make the denominators the same. to do that, first factor 2p^2-7p-4 = \left(2p+1\right)\left(p-4\right)2p
2
−7p−4=(2p+1)(p−4)
So then the equation looks like:
\frac{p}{2p+1}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{5}{p-4}
2p+1
p
−
(2p+1)(p−4)
2p
2
+5
=−
p−4
5
To make the denominators equal, multiply 2p+1 with p-4 and p-4 with 2p+1:
\frac{p^2-4p}{(2p+1)(p-4)}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{10p+5}{(p-4)(2p+1)}
(2p+1)(p−4)
p
2
−4p
−
(2p+1)(p−4)
2p
2
+5
=−
(p−4)(2p+1)
10p+5
Since, this has an equal sign we 'get rid of' or 'forget' the denominator and only solve the numerator.
(p^2-4p)-(2p^2+5)=-(10p+5)(p
2
−4p)−(2p
2
+5)=−(10p+5)
Now, solve like a normal equation. Solve (p^2-4p)-(2p^2+5)(p
2
−4p)−(2p
2
+5) first:
(p^2-4p)-(2p^2+5)=-p^2-4p-5(p
2
−4p)−(2p
2
+5)=−p
2
−4p−5
-p^2-4p-5=-10p+5−p
2
−4p−5=−10p+5
Combine like terms:
-p^2-4p+0=-10p−p
2
−4p+0=−10p
-p^2+6p=0−p
2
+6p=0
Factor:
p=0, p=6p