the bond will break
The bond will dissolve (break) if the electron absorbs a photon and is moved from a bonding molecular orbital to an antibonding orbital since there is no longer an overall stabilizing interaction.
<h3>What is an antibonding orbital?</h3>
An antibonding molecular orbital is the molecular orbital created by the destructive overlapping of atomic orbitals.
<h3>Why is it called antibonding orbital?</h3>
- Every atom will add one electron to the bond that makes up the lower energy bond.
- To prevent interacting with the other two electrons, the additional electron will occupy a higher energy state.
- The antibonding orbital is the name of this higher energy orbital.
<h3>What orbitals form an antibond?</h3>
- The bonding orbitals are home to electrons that spend the majority of their time between the nuclei of two atoms, whereas the antibonding orbitals are home to electrons that spend the majority of their time outside the nuclei of two atoms.
<h3>When an electron was elevated to the antibonding orbital, what happened?</h3>
- In contrast, putting electrons in antibonding orbitals will make the molecule less stable.
- The energy levels of the orbitals will determine how many electrons are filled.
- The lower energy orbitals will be filled first, and then the higher energy orbitals.
<h3 />
To learn more about antibonding orbitals visit:
brainly.com/question/17303393
#SPJ4
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.
Answer:
Water - H2O
Ammonia - NH3
Sulfur dioxide - SO2
Hydrogen sulfide - H2S
Ethanol - C2H6O
Explanation:
Those are some atoms with polar covalent bonds. Hope this helps!!
The group is called the noble gas i think