Answer:
Option C. Electrons are shared between two atoms
Explanation:
Covalent bonding is a type of bonding which exist between two non metals.
In this bonding, electrons are shared between the two atoms involved in order to attain a stable octet configuration.
This can be seen when hydrogen atom combine with chlorine atom to form hydrogen chloride as shown below:
H + Cl —> HCl
Hydrogen has 1 electron in it's outmost shell and it requires 1 electron to attain a stable configuration.
Chlorine has 7 electrons in it's outmost shell and requires 1 electron to attain a stable configuration.
During bonding, both hydrogen and chlorine will contribute 1 electron each to form bond, thereby attaining a stable configuration. The bond formed in this case is called covalent bond as both atoms involved shared electron to attain a stable configuration.
<span>mechanical energy, thermal energy, nuclear energy, chemical energy, electromagnetic energy </span>
Answer:
2.3 x 10-23 g.
Explanation:
The mass of a single atom is the mass number, 14, is the mass in grams of one mole of carbon.
One mole of Nitrogen atom is 6.022 x 1023 atoms (Avogadro's number). This can then used to convert a nitogen atom to grams by the ratio:
mass of 1 atom / 1 atom = mass of a mole of atoms / 6.022 x 10^23 atoms.
mass of 1 atom = mass of a mole of atoms / 6.022 x 1023
mass of 1 N atom = 14 / 6.022 x 10^23 N atoms
mass of 1 N atom = 2.325 x 10^-23 g
The mass of a single Nitrogen atom is 2.325 x 10-23 g.
BaCl₂(aq) + Na₂SO₄(aq) = BaSO₄(s) + 2NaCl(aq)
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) = BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq)
Ba²⁺(aq) + SO₄²⁻(aq)= BaSO₄(s)
Answer:
The answer is "10.84 g".
Explanation:
The formula for calculating the number for moles:

In the given acid nitric:
Owing to the nitric acid mass = 
Nitric acid molar weight
If they put values above the formula, they receive:


In the given chemical equation:

In this reaction, 2 mols of nitric acid are produced by 1 mole of water.
So, 1.204 moles of nitric acid will be produced:

We are now using Equation 1 in determining the quantity of water:
Water moles 
Water weight molar 

