Answer:
53
Step-by-step explanation:
complementary angle meaning it needs to have the whole sum of 90 degree.
90-37=53
To abide by the mathematical order of operations in this equation you must distribute "a" into "b" and "c" by multiplying, which is the distributive property. So the answer would be C. Distributive
1. 4x=64
x=26
2. 9x=20
x=9/20
3. 8+5x<70
5x<62
x<12.4
4. 2+x=50
x=52
5. n+5-5<15
n<15
6. x-10=30
x=40
7. x+5=13
x=8
8. a+8=20
a=12
9. x·3=27
x=9
10. x²=2+6
x²=8
x=√8
x=-√8
we know that
Applying the law of cosines:
c² = a² + b² - 2abcos(C)
where:
a,b and c are sides of the triangle and C is the angle opposite side c
let
a=170 mi
b=200 mi
c=160 mi
that is
160² = 170² + 200² - 2(170)(200)cos(C)
solve for C
25,600 = 28,900 + 40,000 - 68,000cos(C)
25,600 - 28,900 - 40,000 = -68,000cos(C)
-43,300=-68,000cos (C)
cos (C)=0.6367
C=arc cos(0.6367)--------> C=50.45°
hence,
he should turn in the direction of island b by
180 - 50.45 = 129.55 degrees
the answer is
129.55 degrees
Answer:
Step-by-step explanation:

<h2 /><h2>
<u>Consider</u></h2>

<h2>
<u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>




So, on substituting all these values, we get




<h2>Hence,</h2>

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h2>ADDITIONAL INFORMATION :-</h2>
Sign of Trigonometric ratios in Quadrants
- sin (90°-θ) = cos θ
- cos (90°-θ) = sin θ
- tan (90°-θ) = cot θ
- csc (90°-θ) = sec θ
- sec (90°-θ) = csc θ
- cot (90°-θ) = tan θ
- sin (90°+θ) = cos θ
- cos (90°+θ) = -sin θ
- tan (90°+θ) = -cot θ
- csc (90°+θ) = sec θ
- sec (90°+θ) = -csc θ
- cot (90°+θ) = -tan θ
- sin (180°-θ) = sin θ
- cos (180°-θ) = -cos θ
- tan (180°-θ) = -tan θ
- csc (180°-θ) = csc θ
- sec (180°-θ) = -sec θ
- cot (180°-θ) = -cot θ
- sin (180°+θ) = -sin θ
- cos (180°+θ) = -cos θ
- tan (180°+θ) = tan θ
- csc (180°+θ) = -csc θ
- sec (180°+θ) = -sec θ
- cot (180°+θ) = cot θ
- sin (270°-θ) = -cos θ
- cos (270°-θ) = -sin θ
- tan (270°-θ) = cot θ
- csc (270°-θ) = -sec θ
- sec (270°-θ) = -csc θ
- cot (270°-θ) = tan θ
- sin (270°+θ) = -cos θ
- cos (270°+θ) = sin θ
- tan (270°+θ) = -cot θ
- csc (270°+θ) = -sec θ
- sec (270°+θ) = cos θ
- cot (270°+θ) = -tan θ