1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
2 years ago
7

Prove the following

Mathematics
2 answers:
fomenos2 years ago
7 0

Answer:

Step-by-step explanation:

\large\underline{\sf{Solution-}}

<h2 /><h2><u>Consider</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

<h2><u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinx

\rm \: {cos \: (2\pi + x) }

\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanx

\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get

\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}

\rm \: = \: 1=1

<h2>Hence,</h2>

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>ADDITIONAL INFORMATION :-</h2>

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ)  =  cos θ
  • cos (90°-θ)  =  sin θ
  • tan (90°-θ)  =  cot θ
  • csc (90°-θ)  =  sec θ
  • sec (90°-θ)  =  csc θ
  • cot (90°-θ)  =  tan θ
  • sin (90°+θ)  =  cos θ
  • cos (90°+θ)  =  -sin θ
  • tan (90°+θ)  =  -cot θ
  • csc (90°+θ)  =  sec θ
  • sec (90°+θ)  =  -csc θ
  • cot (90°+θ)  =  -tan θ
  • sin (180°-θ)  =  sin θ
  • cos (180°-θ)  =  -cos θ
  • tan (180°-θ)  =  -tan θ
  • csc (180°-θ)  =  csc θ
  • sec (180°-θ)  =  -sec θ
  • cot (180°-θ)  =  -cot θ
  • sin (180°+θ)  =  -sin θ
  • cos (180°+θ)  =  -cos θ
  • tan (180°+θ)  =  tan θ
  • csc (180°+θ)  =  -csc θ
  • sec (180°+θ)  =  -sec θ
  • cot (180°+θ)  =  cot θ
  • sin (270°-θ)  =  -cos θ
  • cos (270°-θ)  =  -sin θ
  • tan (270°-θ)  =  cot θ
  • csc (270°-θ)  =  -sec θ
  • sec (270°-θ)  =  -csc θ
  • cot (270°-θ)  =  tan θ
  • sin (270°+θ)  =  -cos θ
  • cos (270°+θ)  =  sin θ
  • tan (270°+θ)  =  -cot θ
  • csc (270°+θ)  =  -sec θ
  • sec (270°+θ)  =  cos θ
  • cot (270°+θ)  =  -tan θ
salantis [7]2 years ago
4 0

Step-by-step explanation:

Hence,

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

You might be interested in
Question 8 please answer ​
makvit [3.9K]

Answer:

The answer is B

Step-by-step explanation:

9/15 is 3/5 Reduced for Yellow Flowers

3 0
3 years ago
Read 2 more answers
Question 1
fiasKO [112]
The scale factor is 3
4 0
3 years ago
Read 2 more answers
Question below..................
morpeh [17]
............ ........... .

7 0
2 years ago
Write the sentence as an inequality
oee [108]

Answer:

X2+4<10

Step-by-step explanation:

7 0
2 years ago
What is the answer to 4x&lt;12
Korolek [52]
All you'd do is divide by 4 on both sides,

4/4 = 1
12/4 = 3

Your Answer:
x < 3

5 0
3 years ago
Read 2 more answers
Other questions:
  • Why is 2 the only number that is always 4 when added multiplied or squared
    5·1 answer
  • 6v-6+2(3v+3)=-2(v+9)
    6·1 answer
  • Match the two numbers with their least common multiple (LCM).
    13·1 answer
  • What is the value of x?<br><br><br> x = 55°<br><br> x = 60°<br><br> x = 70°<br><br> x = 110°
    8·2 answers
  • What is the solution to the system of equations below? -4x+6y=-18 and y=-2x+21<br> plz explain!
    8·2 answers
  • Solve 15 = 2^(x+1).
    11·1 answer
  • ****Please help me with this math problem!!**** Will give stars, thanks, and brainliest!! Josh solved the equation below. Is his
    8·1 answer
  • Would this angle be name angle CUE or CUT ?
    9·1 answer
  • One hundred sixty-four million, two hundred twenty-eight thousand, five hundred ninety-one.
    10·2 answers
  • Whats the answer for this...?<br> Ive tried 6 times in total, i just gave up :l
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!