Answer:
negative
Step-by-step explanation: it has negative signs
\left[A \right] = \left[ \frac{ - \left( 5 - 3\,x - 2\,x^{2} - 2\,x^{3}\right) }{-1-x}\right][A]=[−1−x−(5−3x−2x2−2x3)] I hope helping this answer
Answer:
I honestly don’t know I am gonna guess
Step-by-step explanation:
1/12?
. 。 • ゚ 。 . .
. . 。 。 . .
. 。 ඞ 。 . • • .
.
゚ Bread was Not An Impostor. 。 . .
' 1 Impostor remains 。 .
゚ . . , . .. . .
Have a nice day UwU
Rewrite the equations of the given boundary lines:
<em>y</em> = -<em>x</em> + 1 ==> <em>x</em> + <em>y</em> = 1
<em>y</em> = -<em>x</em> + 4 ==> <em>x</em> + <em>y</em> = 4
<em>y</em> = 2<em>x</em> + 2 ==> -2<em>x</em> + <em>y</em> = 2
<em>y</em> = 2<em>x</em> + 5 ==> -2<em>x</em> + <em>y</em> = 5
This tells us the parallelogram in the <em>x</em>-<em>y</em> plane corresponds to the rectangle in the <em>u</em>-<em>v</em> plane with 1 ≤ <em>u</em> ≤ 4 and 2 ≤ <em>v</em> ≤ 5.
Compute the Jacobian determinant for this change of coordinates:

Rewrite the integrand:

The integral is then

Answer:
Table 3
Step-by-step explanation:
Check table three;


Since the left hand limit
is not equal to the right hand limit
, the limit as x approaches to 2 does not exist.
Therefore "nonexistent" is true, and table 3 is the correct model of the limits of the function at x = 2