Answer:
e = 3.97*10^-4
Explanation:
1.8 mm = 0.0018 m
2.6*10^4 mm = 26 m
Elongation is The ratio between the stretched length and the original length.
e = L/L0
This is calculated with Hooke's law:
e = σ/E
Where
σ: normal stress
E: elastic constant
σ = P/A
Where
P: normal load
A: cross section
A = π/4 * d^2
Therefore:
e = P / (A * E)
e = 4 * P / (π * d^2 * E)
e = 4 * 290 / (π * 0.0018^2 * 207*10^9) = 3.97*10^-4
I think the answer is the third option
The shear stress at any given point y1 along the height of the cross section is calculated by: where Ic = b·h3/12 is the centroidal moment of inertia of the cross section. The maximum shear stress occurs at the neutral axis of the beam and is calculated by: where A = b·h is the area of the cross section.
Without PPE, employees are at risk of Cuts and punctures. Chemical burns. Electric shocks. Exposure to excessive noise or vibration.
Answer:
The solution and explanation is attached.
Explanation: