Answer:
-25.63°C.
Explanation:
We know that throttling is a constant enthalpy process

From steal table
We know that if we know only one property in side the dome then we will find the other property by using steam property table.
Temperature at saturation pressure 1 bar is 99.63°C and Temperature at saturation pressure 0.35 bar is about 74°C .
So from above we can say that change in temperature is -25.63°C.
But there is no any option for that .
Answer:
T₂ =93.77 °C
Explanation:
Initial temperature ,T₁ =27°C= 273 +27 = 300 K
We know that
Absolute pressure = Gauge pressure + Atmospheric pressure
Initial pressure ,P₁ = 300+1=301 kPa
Final pressure ,P₂= 367+1 = 368 kPa
Lets take temperature=T₂
We know that ,If the volume of the gas is constant ,then we can say that


Now by putting the values in the above equation we get

The temperature in °C
T₂ = 366.77 - 273 °C
T₂ =93.77 °C
Answer:
There is 0.466 KW required to operate this air-conditioning system
Explanation:
<u>Step 1:</u> Data given
Heat transfer rate of the house = Ql = 755 kJ/min
House temperature = Th = 24°C = 24 +273 = 297 Kelvin
Outdoor temperature = To = 35 °C = 35 + 273 = 308 Kelvin
<u>Step 2: </u> Calculate the coefficient of performance o reversed carnot air-conditioner working between the specified temperature limits.
COPr,c = 1 / ((To/Th) - 1)
COPr,c = 1 /(( 308/297) - 1)
COPr,c = 1/ 0.037
COPr,c = 27
<u>Step 3:</u> The power input cna be given as followed:
Wnet,in = Ql / COPr,max
Wnet, in = 755 / 27
Wnet,in = 27.963 kJ/min
Win = 27.963 * 1 KW/60kJ/min = 0.466 KW
There is 0.466 KW required to operate this air-conditioning system
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
Answer:
74,4 litros
Explanation:
Dado que
W = nRT ln (Vf / Vi)
W = 3000J
R = 8,314 JK-1mol-1
T = 58 + 273 = 331 K
Vf = desconocido
Vi = 25 L
W / nRT = ln (Vf / Vi)
W / nRT = 2.303 log (Vf / Vi)
W / nRT * 1 / 2.303 = log (Vf / Vi)
Vf / Vi = Antilog (W / nRT * 1 / 2.303)
Vf = Antilog (W / nRT * 1 / 2.303) * Vi
Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25
Vf = 74,4 litros