Answer:
![\boxed{4 \sqrt[8]{ {d}^{3} } }](https://tex.z-dn.net/?f=%20%5Cboxed%7B4%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20%7D%20)
Step-by-step explanation:
![= > 4 {d}^{ \frac{3}{8} } \\ \\ = > 4({d}^{3 \times \frac{1}{8} }) \\ \\ = > 4( {d}^{3} \times {d}^{ \frac{1}{8} } ) \\ \\ = > 4( {d}^{3} \times \sqrt[8]{d} ) \\ \\ = > 4 \sqrt[8]{ {d}^{3} }](https://tex.z-dn.net/?f=%20%3D%20%20%3E%204%20%7Bd%7D%5E%7B%20%5Cfrac%7B3%7D%7B8%7D%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%20%3E%204%28%7Bd%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B8%7D%20%7D%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%20%7Bd%7D%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%5B8%5D%7Bd%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%20%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20)
The first one is 212
and the second one is 158
so yes it is false they do not equal
So just convert to a common form
I will convert to decimal since 2 of them are already decimals
to conver 1 and 3/7 to decimal, just divide 3 by 7 using a calculator
1 3/7=1.43...
so 1.38, 1.43, 1.40
the greates is .43 then .40 then .38 so the order is
least to greatest
1.38, 1.4, 1 3/7 or D
Answer:
1) Slope-intercept form
2) 9200
3) 2 months
4) (0,200)
Step-by-step explanation:
A shelter had 200 animals in foster homes at the beginning of spring and the number of animals in foster homes at the end of the summer could be represented by
y=3000x+200 ............ (1)
Where x is the number of months and y is the number of animals.
1) The equation (1) is written in the slope-intercept form of a straight line equation.
2) After 3 months means x = 3 and the number of animals in the foster home after 3 months will be (3000 ×3 + 200) = 9200 (Answer)
3) Let after x months the animal population will become 6200.
So, 6200 = 3000x + 200
⇒ 3000x = 6000
⇒ x = 2 months (Answer)
4) If we put x = 0 in equation (1), then we get y = 200.
So, (0,200) is a point on the graph of the line. (Answer)