is the power series representation for the function f(x) = x³sin(x) + e³ˣ⁺². This can be obtained by using power series representation of each terms, sin x, eˣ and substituting in the function.
<h3>Find the power series representation for the function:</h3>
In the question the given function is,
⇒ f(x) = x³sin(x) + e³ˣ⁺²
We know that series representation of sin x and eˣ are:
⇒ ![e^{3x} = \sum^{\infty }_{n=0} \frac{1}{n!}x^{n}](https://tex.z-dn.net/?f=e%5E%7B3x%7D%20%3D%20%5Csum%5E%7B%5Cinfty%20%7D_%7Bn%3D0%7D%20%5Cfrac%7B1%7D%7Bn%21%7Dx%5E%7Bn%7D)
= ![\sum^{\infty }_{n=0} \frac{1}{n!}3^{n}x^{n}](https://tex.z-dn.net/?f=%5Csum%5E%7B%5Cinfty%20%7D_%7Bn%3D0%7D%20%5Cfrac%7B1%7D%7Bn%21%7D3%5E%7Bn%7Dx%5E%7Bn%7D)
Substituting the series representation in the function we get,
⇒ f(x) = x³sin(x) + e³ˣ⁺²
⇒ ![f(x)=x^{3}\sum^{\infty}_{n=0} \frac{(-1)^{n}}{(2n+1)!}x^{2n+1} + e^{2} \sum^{\infty }_{n=0} \frac{1}{n!}3^{n}x^{n}](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B3%7D%5Csum%5E%7B%5Cinfty%7D_%7Bn%3D0%7D%20%5Cfrac%7B%28-1%29%5E%7Bn%7D%7D%7B%282n%2B1%29%21%7Dx%5E%7B2n%2B1%7D%20%2B%20e%5E%7B2%7D%20%5Csum%5E%7B%5Cinfty%20%7D_%7Bn%3D0%7D%20%5Cfrac%7B1%7D%7Bn%21%7D3%5E%7Bn%7Dx%5E%7Bn%7D)
![f(x)=\sum^{\infty}_{n=0} \frac{(-1)^{n}}{(2n+1)!}x^{2(2n+2)} + e^{2} \sum^{\infty }_{n=0} \frac{1}{n!}3^{n}x^{n}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csum%5E%7B%5Cinfty%7D_%7Bn%3D0%7D%20%5Cfrac%7B%28-1%29%5E%7Bn%7D%7D%7B%282n%2B1%29%21%7Dx%5E%7B2%282n%2B2%29%7D%20%2B%20e%5E%7B2%7D%20%5Csum%5E%7B%5Cinfty%20%7D_%7Bn%3D0%7D%20%5Cfrac%7B1%7D%7Bn%21%7D3%5E%7Bn%7Dx%5E%7Bn%7D)
Hence
is the power series representation for the function f(x) = x³sin(x) + e³ˣ⁺².
Learn more about power series representation here:
brainly.com/question/11606956
#SPJ1
Answer:
40 lol
Step-by-step explanation:
Answer:
11 and 12
Step-by-step explanation:
because 11 and 12 are two positive consecutive integers. and when you multiply 11 and 12 you get 132.
![11*12=132\\](https://tex.z-dn.net/?f=11%2A12%3D132%5C%5C)