Step-by-step explanation:
Let
where



so that

Recall that the derivative of the product of functions is

so taking the derivatives of the individual functions, we get



So the derivative of y(x) is given by

or



Answer:
A perfect square is a whole number that is the square of another whole number.
n*n = N
where n and N are whole numbers.
Now, "a perfect square ends with the same two digits".
This can be really trivial.
For example, if we take the number 10, and we square it, we will have:
10*10 = 100
The last two digits of 100 are zeros, so it ends with the same two digits.
Now, if now we take:
100*100 = 10,000
10,000 is also a perfect square, and the two last digits are zeros again.
So we can see a pattern here, we can go forever with this:
1,000^2 = 1,000,000
10,000^2 = 100,000,000
etc...
So we can find infinite perfect squares that end with the same two digits.
<h3>
Answer: C) 0</h3>
================================================
Explanation:
If points F and E are the midpoints of segment VU and segment ST respectively, then segment FE is the midsegment of the trapezoid. The midsegment is parallel to the bases, and the midsegment's length is found by adding up the bases VS and UT, then dividing by 2.
(VS + UT)/2 = FE
(29 + x+17)/2 = 23 ... plug in given info; isolate x
(x+46)/2 = 23
x+46 = 23*2 ... multiply both sides by 2
x+46 = 46
x = 46-46 ... subtract 46 from both sides
<h3>
x = 0</h3>