Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
Answer: ![\bold{w=\dfrac{6y-3}{2}}](https://tex.z-dn.net/?f=%5Cbold%7Bw%3D%5Cdfrac%7B6y-3%7D%7B2%7D%7D)
<u>Step-by-step explanation:</u>
Isolate w by performing the following steps
- Multiply by 6 on both sides to clear the denominator
- Subtract 3 from both sides
- Divide both sides by 2
![y=\dfrac{1}{2}+\dfrac{w}{3}\\\\\\6\bigg[y=\dfrac{1}{2}+\dfrac{w}{3}\bigg]\quad \implies \quad 6y=3+2w\\\\\\6y-3=3-3+2w\quad \implies \quad 6y-3=2w\\\\\\\dfrac{6y-3}{2}=\dfrac{2w}{2}\quad \implies \quad \large\boxed{\dfrac{6y-3}{2}=w}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7Bw%7D%7B3%7D%5C%5C%5C%5C%5C%5C6%5Cbigg%5By%3D%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7Bw%7D%7B3%7D%5Cbigg%5D%5Cquad%20%5Cimplies%20%5Cquad%206y%3D3%2B2w%5C%5C%5C%5C%5C%5C6y-3%3D3-3%2B2w%5Cquad%20%5Cimplies%20%5Cquad%206y-3%3D2w%5C%5C%5C%5C%5C%5C%5Cdfrac%7B6y-3%7D%7B2%7D%3D%5Cdfrac%7B2w%7D%7B2%7D%5Cquad%20%5Cimplies%20%5Cquad%20%5Clarge%5Cboxed%7B%5Cdfrac%7B6y-3%7D%7B2%7D%3Dw%7D)
The values coming in the interval (-3,1] are -2, -1, 0, and 1.
<h3>What is defined as the term interval notations?</h3>
- An interval is represented on a number line using interval notation. In all other sayings, it is a method of writing real number line subsets.
- An interval is made up of numbers that fall between two specific data set.
- Intervals can be categorized according to the numbers in the set.
- Interval Open: The endpoints of a inequality are not included in this type of interval.
- Interval Closure; The endpoints of a inequality are included in this type of interval.
- Interval with Half-Open Doors: This interval contains only one of inequality's endpoints.
The given interval notation is;
(-3,1], it is the case of half open half close.
-3 comes with the open interval, it means its value will not be included in the interval.
1 is with the closed interval, it means its value will be included in the interval.
Thus, the values lying between the interval (-3, 1] are -2, -1, 0, and 1.
To know more about the interval notations, here
brainly.com/question/16768997
#SPJ10
The answers are...
x=7
y=2
Answer:
Step-by-step explanation:
as mode is 45 ,two of three is 45
i assume x =y=45
now (41+46+45+45+z)/5=50
177+z=50×5=250
z=250-177=73
so x=45
y=45
z=73