First I’ll show you this standard derivation using conservation of energy:
Pi=Kf,
mgh = 1/2 m v^2,
V = sqrt(2gh)
P is initial potential energy, K is final kinetic, m is mass of object, h is height from stopping point, v is final velocity.
In this case the height difference for the hill is 2-0.5=1.5 m. Thus the ball is moving at sqrt(2(10)(1.5))=
5.477 m/s.
I think that the shopping cart full of groceries has more inertia because it is the one with more tendency to do nothing or be still.
Answer:
A downward sloped line means the object is returning to the starting point.
To solve this task we have to make a proportion, but firstly we have to set up all the main points : so, the distance is s=r(B), that has its <span>r=radius,B=angle in rad
velocity v=ds/dt= w(r)
Do not forget about </span> w = angular speed in rad/s and

Now we can go to proportion




SOLVING FOR A :



or something about <span>10 mph --- SOLVING FOR B.
</span>I'm sure it helps!
You use energy from your body and press the pedals on the bike that has chains and the chains are connected to a circular ish shape and is also connected to the wheel and it spins