<em>S</em><em>t</em><em>e</em><em>p</em><em>-</em><em>b</em><em>y</em><em>-</em><em>s</em><em>t</em><em>e</em><em>p</em><em> </em><em>e</em><em>xplanation</em><em>:</em>
<em>Since</em><em> </em><em>-3a</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>said</em><em> </em><em>to</em><em> </em><em>have</em><em> </em><em>a</em><em> </em><em>power</em><em> </em><em>of</em><em> </em><em>1</em><em>,</em><em> </em><em>we</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>powers</em><em> </em><em>together</em><em> </em><em>and</em><em> </em><em>multiply</em><em> </em><em>the</em><em> </em><em>coefficients</em>
-9a³
Answer:
.
See the diagram attached below.
Let the chords be AB and AC with common point A.
AD is the diameter. Join B with D and C with D to form two triangles.
We need to prove that AB=AC.
\begin{gathered}In\ \triangle ABD\ and \triangle ACD;\\Given\ that\ \angle BAD=\angle CAD----(condition\ 1)\\since\ AD\ is\ diameter, \angle ABD=\angle ACD = 90^0\\So\ \angle ADB=\angle ADC--------(condition\ 2)\\AD=AD\ (common\ side)-----(condition\ 3)\\ \\So\ the\ triangles\ are\ congruent\ by\ ASA\ rule.\\Hence\ AB=AC.\end{gathered}
In △ABD and△ACD;
Given that ∠BAD=∠CAD−−−−(condition 1)
since AD is diameter,∠ABD=∠ACD=90
0
So ∠ADB=∠ADC−−−−−−−−(condition 2)
AD=AD (common side)−−−−−(condition 3)
So the triangles are congruent by ASA rule.
Hence AB=AC.
The geometric sequence is starting with 2 and multiplying by 3 every time. We can get the rule of this sequence by...
If 2 is a_0, 6 is a_1, 18 is a_2, etc.
a_n=2*3^n
For the 14th term, which is a_13, the value is 2*3^13.
Using a calculator because I'm too lazy to calculate 3^13 sorry, we can get.
3188646
1turn = 360 half a turn is 180
360+180=540
What in the world is this language talking abaut?