The answer has to be 34 units^2 (34 units squared)
Answer:
Perimeter of the rectangle = 96 meters.
Step-by-step explanation:
Let the width of the rectangle = K
So, the length of the rectangle = 5K
Area = 320 sq meters
Now, Area of a Rectangle = Length x Width
⇒ 320 = K x 5K
or,
So, the vlue of K = 8 or, K = -8
But as K represents a length hence, K ≠ -8
So, the <u>width of the rectangle = 8 meters</u>
and the<u> length of the rectangle = 8 x 5 = 40 meters</u>
Now, Perimeter = 2(length + width)
= 2(8 + 40) = 96 meters.
So, the perimeter of the rectangle = 96 meters.
Answer:
(3, 3 )
Step-by-step explanation:
Given the 2 equations
3x - y = 6 → (1)
6x + y = 21 → (2)
Adding the 2 equations term by term will eliminate y, that is
(6x + 3x) + (y - y) = (21 + 6), that is
9x = 27 (divide both sides by 9 )
x = 3
Substitute x = 3 into either (1) or (2) and solve for y
Using (2), then
(6 × 3) + y = 21
18 + y = 21 ( subtract 18 from both sides )
y = 3
Solution is (3, 3 )
Before we begin, let's identify what kind of angles these are and are they related in any way?
These angles are both acute and they are both corresponding angles.
Corresponding angles are equal to each other, and we can use this fact to our advantage.
Since they are equal to each other, we can set the equations of 1 and 2 equal to each other. Like so,
1 = 2
83 - 2x = 92 - 3x
Now, we can solve for X by isolating it on one side.
83 - 2x = 92 - 3x
Add 3x to each side: (This basically moves the X on the right side to the left.)
83 - 2x + 3x = 92 - 3x + 3x
83 + x = 92
Subtract 83 on each side to isolate the X.
83 + x - 83 = 92 - 83
x = 92 - 83
x = 9
Therefore, X equals 9. To check our work, we can substitute X for 9.
83 - 2(9) = 92 - 3(9)
83 - 18 = 92 - 27
65 = 65 -
TRUE
So to conclude, Angle 1 is 65 degrees, Angle 2 is 65 degrees, and X equals 9.
Hope I could help you out!
If my answer is incorrect, or I provided an answer you were not looking for, please let me know. However, if my answer is explained well and correct, please consider marking my answer as Brainliest! :)
Have a good one.
God bless!