Answer: A.
The reason is because if you're adding a negative to a number, it's subtraction, which is in the expression.
Answer:
If k = −1 then the system has no solutions.
If k = 2 then the system has infinitely many solutions.
The system cannot have unique solution.
Step-by-step explanation:
We have the following system of equations
![x - 2y +3z = 2\\x + y + z = k\\2x - y + 4z = k^2](https://tex.z-dn.net/?f=x%20-%202y%20%2B3z%20%3D%202%5C%5Cx%20%2B%20y%20%2B%20z%20%3D%20k%5C%5C2x%20-%20y%20%2B%204z%20%3D%20k%5E2)
The augmented matrix is
![\left[\begin{array}{cccc}1&-2&3&2\\1&1&1&k\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C1%261%261%26k%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
The reduction of this matrix to row-echelon form is outlined below.
![R_2\rightarrow R_2-R_1](https://tex.z-dn.net/?f=R_2%5Crightarrow%20R_2-R_1)
![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
![R_3\rightarrow R_3-2R_1](https://tex.z-dn.net/?f=R_3%5Crightarrow%20R_3-2R_1)
![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&3&-2&k^2-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%263%26-2%26k%5E2-4%5Cend%7Barray%7D%5Cright%5D)
![R_3\rightarrow R_3-R_2](https://tex.z-dn.net/?f=R_3%5Crightarrow%20R_3-R_2)
![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&0&0&k^2-k-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%260%260%26k%5E2-k-2%5Cend%7Barray%7D%5Cright%5D)
The last row determines, if there are solutions or not. To be consistent, we must have k such that
![k^2-k-2=0](https://tex.z-dn.net/?f=k%5E2-k-2%3D0)
![\left(k+1\right)\left(k-2\right)=0\\k=-1,\:k=2](https://tex.z-dn.net/?f=%5Cleft%28k%2B1%5Cright%29%5Cleft%28k-2%5Cright%29%3D0%5C%5Ck%3D-1%2C%5C%3Ak%3D2)
Case k = −1:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-1-2\\0&0&0&(-1)^2-(-1)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-3\\0&0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-1-2%5C%5C0%260%260%26%28-1%29%5E2-%28-1%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-3%5C%5C0%260%260%26-2%5Cend%7Barray%7D%5Cright%5D)
If k = −1 then the last equation becomes 0 = −2 which is impossible.Therefore, the system has no solutions.
Case k = 2:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&2-2\\0&0&0&(2)^2-(2)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&0\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%262-2%5C%5C0%260%260%26%282%29%5E2-%282%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%260%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
This gives the infinite many solution.
Answer:
9m
Step-by-step explanation:
5 - 3 + 7 = 9
Answer:
C . Sample : 6 boy and 7 girls
Step-by-step explanation:
Data :
Boys = 150
Girls = 175
So ratio between boys and girls
175/150 = 1.67
So when boy is 6
6 ×1.667 = 7
Answer:
Yes, (-3, -9) is a solution.
Step-by-step explanation:
y = 3x (-3,-9)
-9 = 3(-3)
-9 = -9