I believe that the answer is E
Once starch in a person's diet has been broken down into monosaccharides those subunits are absorbed in the small intestines
Carbohydrates, also referred to as sugars, are a type of polymer. They are polymers whose subunits are linked together by glycosidic linkages that, when water is released, form a bond between two monomeric units. The amount of monomers that must come together to make a carbohydrate allows for the division of the carbohydrates into various groups. The monosaccharide, commonly known as simple sugars, is the most basic type of carbohydrate chain.
Since they exist as a single unit and are not connected to any other monosaccharides, these molecules are frequently referred to as the monomers of a carbohydrate chain.
To learn more about monosaccharides refer the link:
brainly.com/question/14308313
#SPJ4
Friction causes moving objects to slow down or stop.
Answer:
<h3>A. </h3>
Explanation:
<h3>Tutorial</h3><h3>Diffusion</h3><h3>Diffusion means that the net movement </h3><h3>of particles (molecules) is from an area of high concentration to low concentration.</h3>
<h3>Graph of the simple and facilitated diffusion taking into account the rate of uptake and the concentration</h3>
<h3>If the particles can move through the lipid bilayer by simple diffusion, then there is</h3><h3> no limit to the number that can fit </h3><h3>through the membrane. The rate of diffusion increases linearly as we add </h3><h3>more particles to one side of the membrane.</h3>
<h3>If the particles can only pass through protein channels, then the rate of </h3><h3>diffusion is determined by the number of channels as well as the number of particles.</h3>
<h3>Once the channels operate at their maximal rate, a further increase in </h3><h3>particle numbers no longer increases the apparent rate of diffusion. At this limited rate we describe the protein channel as being saturated.</h3>
<h3>The cartoon illustrates several points about facilitated diffusion. The particles are more concentrated on one side of the membrane, and yet they can move in both directions. However, the net movement is from high particle concentration to low. If the number of particles gets so high on one side of the membrane that they</h3><h3> interfere with diffusion through the </h3><h3>protein channel, then we observe a limit to the rate of diffusion at the point of saturation.</h3>
<h3>Illustration of facilitated diffusion</h3><h3>animation used with permission of the Virtual Cell Web Page</h3><h3>Problem 7 | Answer | Problem 8</h3><h3>The Biology Project > Cell Biology > Cell Membranes > Problem Set</h3>
<h3>The Biology Project</h3><h3>Department of Biochemistry and Molecular Biophysics</h3><h3>University of Arizona</h3><h3>May 2002</h3><h3>Revised: August 2004</h3><h3>Contact the Development Team</h3>
<h3>Simple diffusion does not require energy: facilitated diffusion requires a source of ATP. Simple diffusion can only move material in the direction of a </h3><h3>concentration gradient; facilitated </h3><h3>diffusion moves materials with and against a concertion gradient. </h3>