Answer:
Step-by-step explanation:
The index of a radical is the denominator of a fractional exponent, and vice versa. If you think about the rules of exponents, you know this must be so.
For example, consider the cube root:
![\sqrt[3]{x}\cdot \sqrt[3]{x}\cdot \sqrt[3]{x}=(\sqrt[3]{x})^3=x\\\\(x^{\frac{1}{3}})^3=x^{\frac{3}{3}}=x^1=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%20%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%20%5Csqrt%5B3%5D%7Bx%7D%3D%28%5Csqrt%5B3%5D%7Bx%7D%29%5E3%3Dx%5C%5C%5C%5C%28x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%5E3%3Dx%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D%3Dx%5E1%3Dx)
That is ...
![\sqrt[3]{x}=x^{\frac{1}{3}} \quad\text{radical index = fraction denominator}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cquad%5Ctext%7Bradical%20index%20%3D%20fraction%20denominator%7D)
The number 2.85 can be writen using the fraction 285/100 which is equal to 57/20 when reduced to lowest terms.
It is also equal to 2 17/20 when writen as a mixed number.
You can use the following approximate value(s) for this number:57/20 =~ 2 6/7 (if you admit a error of 0.250627%)2.85 =~ 2 5/6 (if you admit a error of -0.584795%)2.85 =~ 3 (if you admit a error of 5.263158%)
Answer:
2.45
Step-by-step explanation:
Answer: Choice B
12.5 < x < 18.9
================================================
Explanation:
We have a triangle with these side lengths:
- a = 10
- b = 16
- c = x = unknown
Let's assume that b = 16 is the largest side of this triangle.
By the converse of the pythagorean theorem, we need
to be true in order for an acute triangle to happen.
So,

Now let's consider the possibility that the missing side x is actually the longest side.
Using the same theorem as before, we would say,

We found that x > 12.5 and x < 18.9
This is the same as saying 12.5 < x and x < 18.9
Put together, they form the approximate answer of 12.5 < x < 18.9