Answer:
![\sqrt[5]{2^4}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B2%5E4%7D)
Step-by-step explanation:
Maybe you want 2^(4/5) in radical form.
The denominator of the fractional power is the index of the root. Either the inside or the outside can be raised to the power of the numerator.
![2^{\frac{4}{5}}=\boxed{\sqrt[5]{2^4}=(\sqrt[5]{2})^4}](https://tex.z-dn.net/?f=2%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D%3D%5Cboxed%7B%5Csqrt%5B5%5D%7B2%5E4%7D%3D%28%5Csqrt%5B5%5D%7B2%7D%29%5E4%7D)
__
In many cases, it is preferred to keep the power inside the radical symbol.
Answer:
61,239,550
Step-by-step explanation:
We let the random variable X denote the IQ scores. This would imply that X is normal with a mean of 100 and standard deviation of 17. We proceed to determine the probability that an individual chosen at random from the population would be a genius, that is;
Pr( X>140)
The next step is to evaluate the z-score associated with the IQ score of 140 by standardizing the random variable X;

The area to the right of 2.3529 will be the required probability. This area from the standard normal tables is 0.009314
From a population of 6,575,000,000 the number of geniuses would be;
6,575,000,000*0.009314 = 61,239,550
Answer:
9.3 × 10⁷ - 3.4 × 10⁶ = 89 600 000
Which is 8.96*10^7 in scientific notation
Hope this helps you
Answer:
You need four squares.
On the top left square, you put the number 20 over it, and the number 30 to it's left. Put the number 600 in the square.
Next, the bottom left square. But the number 8 on the left side of the square, and put the number 160 in the square.
Now, the top right box. put the number 4 over it, and fill it with the number 120.
Last, fill the bottom right square with the number 32.