Answer:
1/8
Step-by-step explanation:
(22,12) m=4
y=mx+b
12=4*22+b
12=88+b
subtract 88 from each side
b=-76
y = 4x-76
subtract 4x from each side
-4x+7 = -76
Choice A
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
Step-by-step explanation:





Answer:
x=12.5
Step-by-step explanation:
0.7x times (-1.4)=-3.5
-0.28x=-3.5 (divide both sides)
Ans:12.5