Answer:
Q1: p = - 33
Q2: d = - 99
Q3: t = - 13
Step-by-step explanation:
Q1: 
We solve this taking LCM.
We get: 


Q4: 
Again we proceed like Q1 by taking LCM.
We get: 



Q7: 5t + 12 = 4t - 1
We club the like terms on either side.



Hence, the answer.
Answer:
Communitive Property
Step-by-step explanation:
Communitive property is when you switch up numbers when you multiply and add but it's still the same.
Answer:
m is equals to 49 degree + 31 degree so which means it's 80°
Answer:
x = - 4 y = - 4
Step-by-step explanation:
x+y= - 8
-9x-6y=60
First, solve for x in the first equation:
x+y = - 8 Subtract y from both sides
x + y - y = -8 - y y cancels on the left
x = - 8 - y
Now plug in what you found for x into the 2nd equation and solve for y.
- 9x - 6y = 60
-9(- 8 - y) - 6y = 60 Multiply out
72 + 9y - 6y = 60
72 + 3y = 60 Subtract 72 from both sides
72 - 72 + 3y = 60 - 72 72 cancels on the left
3y = - 12 Divie both sides by 3
3y/3 = -12/3 3 cancels on the left because 3/3 = 1
y = -4
Now plug your answer for y back into the first equation to get x.
x + y = -8
x + (-4) = - 8 Add 4 to each side
x - 4 + 4 = - 8 + 4 4 cancels on the left
x = -4
x = - 4 and y = - 4
Answer:
There is a 2.17% probability that a randomly selected person aged 40 years or older is male and jogs.
It would be unusual to randomly select a person aged 40 years or older who is male and jogs.
Step-by-step explanation:
We have these following probabilities.
A 13.9% probability that a randomly selected person aged 40 years or older is a jogger, so
.
In addition, there is a 15.6% probability that a randomly selected person aged 40 years or older is male comma given that he or she jogs. I am going to say that P(B) is the probability that is a male.
is the probability that the person is a male, given that he/she jogs. So 
The Bayes theorem states that:

In which
is the probability that the person does both thigs, so, in this problem, the probability that a randomly selected person aged 40 years or older is male and jogs.
So

There is a 2.17% probability that a randomly selected person aged 40 years or older is male and jogs.
A probability is unusual when it is smaller than 5%.
So it would be unusual to randomly select a person aged 40 years or older who is male and jogs.