1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
3 years ago
15

What interger is equivalent to -(-7)?

Mathematics
1 answer:
Lelechka [254]3 years ago
6 0
Positive 7 (two negitives make a positive)
You might be interested in
Simplify:<br> −z3+5k6−(−z3+10k6)
natta225 [31]

Answer:

The answer to your question is        -5k⁶

Step-by-step explanation:

Polynomial

                                      - z³  + 5k⁶  - (-z³ + 10k⁶)

Use law of signs for the parenthesis

                                     - z³  + 5k⁶ + z³  - 10k⁶

Use associative property for like terms

                                    (-z³ + z³) + (5k⁶ - 10k⁶)

Simplify like terms

                                    (0)  +   (-5k⁶)

Result

                                               -5k⁶

7 0
3 years ago
Read 2 more answers
Evaluate the expression if x = 5, y = 3, and z = 2.<br> 5x - 3
ale4655 [162]

Answer:

22

Step-by-step explanation:

5x - 3

x =  5

5(5) - 3

25 - 3

22

Hope this helps.

4 0
3 years ago
A + 1.05 = 3.7 plz help
vfiekz [6]

Answer:

a=2.65

You just bring over the 1.05 to the 3.7, and just go on from there!

Hope this helps!

6 0
3 years ago
Please help me with 23 and 24.
MrRissso [65]
Don't need an answer anymore post was totes yesterday.

5 0
4 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
Other questions:
  • 54 over 100 in simplest form
    10·1 answer
  • Option 2
    6·1 answer
  • If the m∠SRW = 85°, what are the measures of ∠VRU and ∠URW?
    10·2 answers
  • Jude is placing boxes on a shelf that holds no more than 80 lb. He has x small boxes that weigh 5 lb each and y large boxes that
    10·1 answer
  • Let f(x) = x^2+6 and g(x) = x+8/x . Find (g•f)(-7)
    13·2 answers
  • A student finished 30% of their math in 7 minutes how long will it take to complete all of the homework​
    10·1 answer
  • I need help finding the answer, please
    8·1 answer
  • What is the area of this triangle in the coordinate plane? 5 units 6 units 7 units 12 units? ​
    9·1 answer
  • Help me pls T^T ASAP
    9·2 answers
  • The cost of a car rental is 30​$ per day plus 27 cents per mile. You are on a daily budget of 76 ​$. Write and solve an inequali
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!