D. 1mm/10cm is the correct answer choice.
Simple interest= prt
=806.68 (.0525)(1)
=42.35
Balance=investment + interest earned
806.68+42.35=$849.03
Answer:
A
Step-by-step explanation:
A is false because irrational numbers can not be integers.
Hi there!
So we are given that:-
- tan theta = 7/24 and is on the third Quadrant.
In the third Quadrant or Quadrant III, sine and cosine both are negative, which makes tangent positive.
Since we want to find the value of cos theta. cos must be less than 0 or in negative.
To find cos theta, we can either use the trigonometric identity or Pythagorean Theorem. Here, I will demonstrate two ways to find cos.
<u>U</u><u>s</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>I</u><u>d</u><u>e</u><u>n</u><u>t</u><u>i</u><u>t</u><u>y</u>

Substitute tan theta = 7/24 in.

Evaluate.

Reminder -:

Hence,

Because in QIII, cos<0. Hence,

<u>U</u><u>s</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>P</u><u>y</u><u>t</u><u>h</u><u>a</u><u>g</u><u>o</u><u>r</u><u>e</u><u>a</u><u>n</u><u> </u><u>T</u><u>h</u><u>e</u><u>o</u><u>r</u><u>e</u><u>m</u>

Define c as our hypotenuse while a or b can be adjacent or opposite.
Because tan theta = opposite/adjacent. Therefore:-

Thus, the hypotenuse side is 25. Using the cosine ratio:-

Therefore:-

Because cos<0 in Q3.

Hence, the value of cos theta is -24/25.
Let me know if you have any questions!
Answer:
A) f(x) = x^2 +8(x+2)
Step-by-step explanation:
We will start by putting y=0
0 = x^2+8(x+2) -Apply distributive property
0 = x^2+8x+16
0=(x+4)(x+4)
0=x+4, 0=x+4
x=-4
There is only one zero, and that is x=-4
Brainiest would be appreciated.