In "slope-intercept form"
y = mx +b
the value "m" is called the slope, and the value "b" is called the intercept.
There is another form for the equation of a line, called "point-slope form".
y = m(x -h) +k
where m is still the slope and (h, k) correspond to the (x, y) of the point.
If you write the equation of your line in this "point-slope form", it is easily manipulated to be in the "slope-intercept form".
Fill in
m = (-3/5)
h = -4
k = 0
y = (-3/5)(x -(-4)) +0
Now, you simplify this by using the distributive property.
y = (-3/5)x -(3/5)*4
y = (-3/5)x -12/5 . . . . . . . . . the desired equation
_____
Your understanding of math improves immensely when you become familiar with the terminology. A lot of the rest of it is pattern matching--identifying the parts of one expression that correspond to the parts of another one.
(You will see another version of the "point-slope form", but I find this one the easiest to use for manipulating the equation to other forms.)
a. Note that
is continuous for all
. If
attains a maximum at
, then
. Compute the derivative of
.

Evaluate this at
and solve for
.




To ensure that a maximum is reached for this value of
, we need to check the sign of the second derivative at this critical point.

The second derivative at
is negative, which indicate the function is concave downward, which in turn means that
is indeed a (local) maximum.
b. When
, we have derivatives

Inflection points can occur where the second derivative vanishes.




Then we have three possible inflection points when
,
, or
.
To decide which are actually inflection points, check the sign of
in each of the intervals
,
,
, and
. It's enough to check the sign of any test value of
from each interval.




The sign of
changes to either side of
and
, but not
. This means only
and
are inflection points.
Answer:
175 pages
Step-by-step explanation:
Let's call 'd' the number of days before the deadline, and 'n' the total number of pages of the book.
We have the following equations:
(1)
--> if we multiply the number of pages per day (25) times the number of days (d), we get the total number of pages of the book (n)
(2)
--> he reads 8 pages more per day (so, 25+8), for a number of days equal to (d-2) (d is the deadline), and he reads a total of n-10 pages (because only 10 are left)
We can substitute (1) into (2) and we find:

So, the deadline is 7 days, and from eq.(1) we find the number of pages in the book:
